


Saccharides are the most abundant organic substances in nature and are vital to life. Understanding how carbohydrates regulate proteins during physiological and pathological processes can provide opportunities to address key biological questions and develop new treatments.
However, the diversity and complexity of sugar molecules poses a challenge to experimentally identify sugar-protein binding and interaction sites.
Here, a team from the Chinese Academy of Sciences developed DeepGlycanSite, a deep learning model that is able to accurately predict sugar-binding sites on a given protein structure.
DeepGlycanSite integrates the geometric and evolutionary characteristics of proteins into a deep equivariant graph neural network with a Transformer architecture. Its performance significantly surpasses previous advanced methods and can effectively predict the binding sites of various sugar molecules.
Combined with mutagenesis studies, DeepGlycanSite reveals the guanosine-5'-bisphosphate recognition site of important G protein-coupled receptors.
These findings demonstrate the value of DeepGlycanSite for sugar binding site prediction and can provide insights into the molecular mechanisms behind sugar regulation of proteins of therapeutic importance.
The study was titled "Highly accurate carbohydrate-binding site prediction with DeepGlycanSite" and was published in "Nature Communications" on June 17, 2024.
Sugar is ubiquitous on the cell surface of all organisms. They interact with a variety of protein families such as lectins, antibodies, enzymes and transporters to regulate key biological processes such as immune response, cell differentiation and neural development. Understanding the interaction mechanism between carbohydrates and proteins is the basis for developing carbohydrate drugs.
However, the diversity and complexity of carbohydrate structures, especially the variability of their binding sites with proteins, pose challenges to the acquisition of experimental data and drug design.
Illustration: The complexity of sugar molecules and the diversity of sugar binding sites. (Source: paper)
In the past, traditional binding site prediction methods were not suitable for sugar molecules with complex structures and large changes in size. This, coupled with the scarcity of high-resolution structural data on sugar-protein complexes, limits the performance of predictive models.
In recent years, with the rapid development of Protein Data Bank (PDB) and open glycomics resources, the academic community has accumulated structural data of more than 19,000 such complexes. The increase in these high-quality data makes it possible to use AI technology to develop accurate sugar-binding site prediction models, which is expected to accelerate the discovery and optimization process of sugar drugs.
In the latest research, the Chinese Academy of Sciences team introduced DeepGlycanSite, a deep equivariant graph neural network (EGNN) model that can accurately predict sugar-binding sites with target protein structures.
Illustration: DeepGlycanSite overview. (Source: paper)
The team leveraged geometric features, such as directions and distances within and between residues, as well as evolutionary information, to present proteins as residue-level graphical representations in DeepGlycanSite. Combined with Transformer blocks with self-attention mechanism to enhance feature extraction and complex relationship discovery.
Researchers compared DeepGlycanSite to current state-of-the-art computational methods on an independent test set involving more than a hundred unique sugar-binding proteins.
The results show that the average Matthews correlation coefficient (MCC) of DeepGlycanSite (0.625) is more than 30 times that of StackCBPred (0.018), and far exceeds other sequence-based prediction methods.
Traditional ligand binding site methods may exclude binding sites for simple sugar molecules due to hydrophobicity or small size, while DeepGlycanSite can effectively identify these sites.
Illustration: Comparing model performance in predicting different sugar binding sites. (Source: paper)
Moreover, DeepGlycanSite also performs well in predicting multiple sugar-binding sites on proteins, which is of great value for understanding how multivalent glycoconjugates affect sugar-protein interactions and the regulation of biological processes. . For example, multivalent glycoconjugates are designed as chemical tools and drug candidates to influence the interaction between sugar molecules and lectins.
Different from traditional methods that only use protein sequence or structural information, DeepGlycanSite fully considers the geometric information and evolutionary characteristics of the protein, which may be the key factor for its excellent performance.
Additionally, given the chemical structure of a query sugar molecule, DeepGlycanSite can predict its specific binding site.
Illustration: Query the prediction of specific binding sites of sugars. (Source: Paper)
Researchers explored the application of DeepGlycanSite to functionally important G protein-coupled receptors (GPCRs). Using the protein structure and carbohydrate chemical structure predicted by AlphaFold2, DeepGlycanSite successfully detected the specific binding site of GDP-Fuc on human P2Y14.
While the quality of AlphaFold2’s predicted side chains needs to be improved, DeepGlycanSite relies less on protein structure accuracy and is able to use predicted protein structures to provide insights into sugar-protein interactions.
In summary, the validation of DeepGlycanSite in independent test sets and in vitro case studies shows that it is an effective tool for sugar binding site prediction. Researchers can use DeepGlycanSite to predict sugar-binding pockets on target proteins, thereby advancing understanding of sugar-protein interactions.
Saccharides play a key role in biological functions. DeepGlycanSite not only helps analyze the biological functions of sugar molecules and sugar-binding proteins, but also provides a powerful tool for the development of sugar drugs.
Paper link:https://www.nature.com/articles/s41467-024-49516-2
The above is the detailed content of 30 times higher than traditional methods, the Transformer deep learning model of the Chinese Academy of Sciences team predicts sugar-protein interaction sites. For more information, please follow other related articles on the PHP Chinese website!

MakridakisM-Competitions系列(分别称为M4和M5)分别在2018年和2020年举办(M6也在今年举办了)。对于那些不了解的人来说,m系列得比赛可以被认为是时间序列生态系统的一种现有状态的总结,为当前得预测的理论和实践提供了经验和客观的证据。2018年M4的结果表明,纯粹的“ML”方法在很大程度上胜过传统的统计方法,这在当时是出乎意料的。在两年后的M5[1]中,最的高分是仅具有“ML”方法。并且所有前50名基本上都是基于ML的(大部分是树型模型)。这场比赛看到了LightG

在一项最新的研究中,来自UW和Meta的研究者提出了一种新的解码算法,将AlphaGo采用的蒙特卡洛树搜索算法(Monte-CarloTreeSearch,MCTS)应用到经过近端策略优化(ProximalPolicyOptimization,PPO)训练的RLHF语言模型上,大幅提高了模型生成文本的质量。PPO-MCTS算法通过探索与评估若干条候选序列,搜索到更优的解码策略。通过PPO-MCTS生成的文本能更好满足任务要求。论文链接:https://arxiv.org/pdf/2309.150

编辑|X传统意义上,发现所需特性的分子过程一直是由手动实验、化学家的直觉以及对机制和第一原理的理解推动的。随着化学家越来越多地使用自动化设备和预测合成算法,自主研究设备越来越接近实现。近日,来自MIT的研究人员开发了由集成机器学习工具驱动的闭环自主分子发现平台,以加速具有所需特性的分子的设计。无需手动实验即可探索化学空间并利用已知的化学结构。在两个案例研究中,该平台尝试了3000多个反应,其中1000多个产生了预测的反应产物,提出、合成并表征了303种未报道的染料样分子。该研究以《Autonom

作者|陈旭鹏编辑|ScienceAI由于神经系统的缺陷导致的失语会导致严重的生活障碍,它可能会限制人们的职业和社交生活。近年来,深度学习和脑机接口(BCI)技术的飞速发展为开发能够帮助失语者沟通的神经语音假肢提供了可行性。然而,神经信号的语音解码面临挑战。近日,约旦大学VideoLab和FlinkerLab的研究者开发了一个新型的可微分语音合成器,可以利用一个轻型的卷积神经网络将语音编码为一系列可解释的语音参数(例如音高、响度、共振峰频率等),并通过可微分神经网络将这些参数合成为语音。这个合成器

昨天,Meta开源专攻代码生成的基础模型CodeLlama,可免费用于研究以及商用目的。CodeLlama系列模型有三个参数版本,参数量分别为7B、13B和34B。并且支持多种编程语言,包括Python、C++、Java、PHP、Typescript(Javascript)、C#和Bash。Meta提供的CodeLlama版本包括:代码Llama,基础代码模型;代码羊-Python,Python微调版本;代码Llama-Instruct,自然语言指令微调版就其效果来说,CodeLlama的不同版

一个普通人用一台手机就能制作电影特效的时代已经来了。最近,一个名叫Simulon的3D技术公司发布了一系列特效视频,视频中的3D机器人与环境无缝融合,而且光影效果非常自然。呈现这些效果的APP也叫Simulon,它能让使用者通过手机摄像头的实时拍摄,直接渲染出CGI(计算机生成图像)特效,就跟打开美颜相机拍摄一样。在具体操作中,你要先上传一个3D模型(比如图中的机器人)。Simulon会将这个模型放置到你拍摄的现实世界中,并使用准确的照明、阴影和反射效果来渲染它们。整个过程不需要相机解算、HDR

编辑|紫罗可合成分子的化学空间是非常广阔的。有效地探索这个领域需要依赖计算筛选技术,比如深度学习,以便快速地发现各种有趣的化合物。将分子结构转换为数字表示形式,并开发相应算法生成新的分子结构是进行化学发现的关键。最近,英国格拉斯哥大学的研究团队提出了一种基于电子密度训练的机器学习模型,用于生成主客体binders。这种模型能够以简化分子线性输入规范(SMILES)格式读取数据,准确率高达98%,从而实现对分子在二维空间的全面描述。通过变分自编码器生成主客体系统的电子密度和静电势的三维表示,然后通

人类和四足机器人之间简单有效的交互是创造能干的智能助理机器人的途径,其昭示着这样一个未来:技术以超乎我们想象的方式改善我们的生活。对于这样的人类-机器人交互系统,关键是让四足机器人有能力响应自然语言指令。近来大型语言模型(LLM)发展迅速,已经展现出了执行高层规划的潜力。然而,对LLM来说,理解低层指令依然很难,比如关节角度目标或电机扭矩,尤其是对于本身就不稳定、必需高频控制信号的足式机器人。因此,大多数现有工作都会假设已为LLM提供了决定机器人行为的高层API,而这就从根本上限制了系统的表现能


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver Mac version
Visual web development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
