search
HomeTechnology peripheralsAI30 times higher than traditional methods, the Transformer deep learning model of the Chinese Academy of Sciences team predicts sugar-protein interaction sites

30 times higher than traditional methods, the Transformer deep learning model of the Chinese Academy of Sciences team predicts sugar-protein interaction sites

Editor | Radish peel

Saccharides are the most abundant organic substances in nature and are vital to life. Understanding how carbohydrates regulate proteins during physiological and pathological processes can provide opportunities to address key biological questions and develop new treatments.

However, the diversity and complexity of sugar molecules poses a challenge to experimentally identify sugar-protein binding and interaction sites.

Here, a team from the Chinese Academy of Sciences developed DeepGlycanSite, a deep learning model that is able to accurately predict sugar-binding sites on a given protein structure.

DeepGlycanSite integrates the geometric and evolutionary characteristics of proteins into a deep equivariant graph neural network with a Transformer architecture. Its performance significantly surpasses previous advanced methods and can effectively predict the binding sites of various sugar molecules.

Combined with mutagenesis studies, DeepGlycanSite reveals the guanosine-5'-bisphosphate recognition site of important G protein-coupled receptors.

These findings demonstrate the value of DeepGlycanSite for sugar binding site prediction and can provide insights into the molecular mechanisms behind sugar regulation of proteins of therapeutic importance.

The study was titled "Highly accurate carbohydrate-binding site prediction with DeepGlycanSite" and was published in "Nature Communications" on June 17, 2024.

30 times higher than traditional methods, the Transformer deep learning model of the Chinese Academy of Sciences team predicts sugar-protein interaction sites

Sugar is ubiquitous on the cell surface of all organisms. They interact with a variety of protein families such as lectins, antibodies, enzymes and transporters to regulate key biological processes such as immune response, cell differentiation and neural development. Understanding the interaction mechanism between carbohydrates and proteins is the basis for developing carbohydrate drugs.

However, the diversity and complexity of carbohydrate structures, especially the variability of their binding sites with proteins, pose challenges to the acquisition of experimental data and drug design.

30 times higher than traditional methods, the Transformer deep learning model of the Chinese Academy of Sciences team predicts sugar-protein interaction sites

Illustration: The complexity of sugar molecules and the diversity of sugar binding sites. (Source: paper)

In the past, traditional binding site prediction methods were not suitable for sugar molecules with complex structures and large changes in size. This, coupled with the scarcity of high-resolution structural data on sugar-protein complexes, limits the performance of predictive models.

In recent years, with the rapid development of Protein Data Bank (PDB) and open glycomics resources, the academic community has accumulated structural data of more than 19,000 such complexes. The increase in these high-quality data makes it possible to use AI technology to develop accurate sugar-binding site prediction models, which is expected to accelerate the discovery and optimization process of sugar drugs.

In the latest research, the Chinese Academy of Sciences team introduced DeepGlycanSite, a deep equivariant graph neural network (EGNN) model that can accurately predict sugar-binding sites with target protein structures.

30 times higher than traditional methods, the Transformer deep learning model of the Chinese Academy of Sciences team predicts sugar-protein interaction sites

Illustration: DeepGlycanSite overview. (Source: paper)

The team leveraged geometric features, such as directions and distances within and between residues, as well as evolutionary information, to present proteins as residue-level graphical representations in DeepGlycanSite. Combined with Transformer blocks with self-attention mechanism to enhance feature extraction and complex relationship discovery.

Researchers compared DeepGlycanSite to current state-of-the-art computational methods on an independent test set involving more than a hundred unique sugar-binding proteins.

The results show that the average Matthews correlation coefficient (MCC) of DeepGlycanSite (0.625) is more than 30 times that of StackCBPred (0.018), and far exceeds other sequence-based prediction methods.

Traditional ligand binding site methods may exclude binding sites for simple sugar molecules due to hydrophobicity or small size, while DeepGlycanSite can effectively identify these sites.

30 times higher than traditional methods, the Transformer deep learning model of the Chinese Academy of Sciences team predicts sugar-protein interaction sites

Illustration: Comparing model performance in predicting different sugar binding sites. (Source: paper)

Moreover, DeepGlycanSite also performs well in predicting multiple sugar-binding sites on proteins, which is of great value for understanding how multivalent glycoconjugates affect sugar-protein interactions and the regulation of biological processes. . For example, multivalent glycoconjugates are designed as chemical tools and drug candidates to influence the interaction between sugar molecules and lectins.

Different from traditional methods that only use protein sequence or structural information, DeepGlycanSite fully considers the geometric information and evolutionary characteristics of the protein, which may be the key factor for its excellent performance.

Additionally, given the chemical structure of a query sugar molecule, DeepGlycanSite can predict its specific binding site.

30 times higher than traditional methods, the Transformer deep learning model of the Chinese Academy of Sciences team predicts sugar-protein interaction sites

Illustration: Query the prediction of specific binding sites of sugars. (Source: Paper)

Researchers explored the application of DeepGlycanSite to functionally important G protein-coupled receptors (GPCRs). Using the protein structure and carbohydrate chemical structure predicted by AlphaFold2, DeepGlycanSite successfully detected the specific binding site of GDP-Fuc on human P2Y14.

30 times higher than traditional methods, the Transformer deep learning model of the Chinese Academy of Sciences team predicts sugar-protein interaction sites

Illustration: Experimental verification of DeepGlycanSite. (Source: Paper)

While the quality of AlphaFold2’s predicted side chains needs to be improved, DeepGlycanSite relies less on protein structure accuracy and is able to use predicted protein structures to provide insights into sugar-protein interactions.

In summary, the validation of DeepGlycanSite in independent test sets and in vitro case studies shows that it is an effective tool for sugar binding site prediction. Researchers can use DeepGlycanSite to predict sugar-binding pockets on target proteins, thereby advancing understanding of sugar-protein interactions.

Saccharides play a key role in biological functions. DeepGlycanSite not only helps analyze the biological functions of sugar molecules and sugar-binding proteins, but also provides a powerful tool for the development of sugar drugs.

Paper link:https://www.nature.com/articles/s41467-024-49516-2

The above is the detailed content of 30 times higher than traditional methods, the Transformer deep learning model of the Chinese Academy of Sciences team predicts sugar-protein interaction sites. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
You Must Build Workplace AI Behind A Veil Of IgnoranceYou Must Build Workplace AI Behind A Veil Of IgnoranceApr 29, 2025 am 11:15 AM

In John Rawls' seminal 1971 book The Theory of Justice, he proposed a thought experiment that we should take as the core of today's AI design and use decision-making: the veil of ignorance. This philosophy provides a simple tool for understanding equity and also provides a blueprint for leaders to use this understanding to design and implement AI equitably. Imagine that you are making rules for a new society. But there is a premise: you don’t know in advance what role you will play in this society. You may end up being rich or poor, healthy or disabled, belonging to a majority or marginal minority. Operating under this "veil of ignorance" prevents rule makers from making decisions that benefit themselves. On the contrary, people will be more motivated to formulate public

Decisions, Decisions… Next Steps For Practical Applied AIDecisions, Decisions… Next Steps For Practical Applied AIApr 29, 2025 am 11:14 AM

Numerous companies specialize in robotic process automation (RPA), offering bots to automate repetitive tasks—UiPath, Automation Anywhere, Blue Prism, and others. Meanwhile, process mining, orchestration, and intelligent document processing speciali

The Agents Are Coming – More On What We Will Do Next To AI PartnersThe Agents Are Coming – More On What We Will Do Next To AI PartnersApr 29, 2025 am 11:13 AM

The future of AI is moving beyond simple word prediction and conversational simulation; AI agents are emerging, capable of independent action and task completion. This shift is already evident in tools like Anthropic's Claude. AI Agents: Research a

Why Empathy Is More Important Than Control For Leaders In An AI-Driven FutureWhy Empathy Is More Important Than Control For Leaders In An AI-Driven FutureApr 29, 2025 am 11:12 AM

Rapid technological advancements necessitate a forward-looking perspective on the future of work. What happens when AI transcends mere productivity enhancement and begins shaping our societal structures? Topher McDougal's upcoming book, Gaia Wakes:

AI For Product Classification: Can Machines Master Tax Law?AI For Product Classification: Can Machines Master Tax Law?Apr 29, 2025 am 11:11 AM

Product classification, often involving complex codes like "HS 8471.30" from systems such as the Harmonized System (HS), is crucial for international trade and domestic sales. These codes ensure correct tax application, impacting every inv

Could Data Center Demand Spark A Climate Tech Rebound?Could Data Center Demand Spark A Climate Tech Rebound?Apr 29, 2025 am 11:10 AM

The future of energy consumption in data centers and climate technology investment This article explores the surge in energy consumption in AI-driven data centers and its impact on climate change, and analyzes innovative solutions and policy recommendations to address this challenge. Challenges of energy demand: Large and ultra-large-scale data centers consume huge power, comparable to the sum of hundreds of thousands of ordinary North American families, and emerging AI ultra-large-scale centers consume dozens of times more power than this. In the first eight months of 2024, Microsoft, Meta, Google and Amazon have invested approximately US$125 billion in the construction and operation of AI data centers (JP Morgan, 2024) (Table 1). Growing energy demand is both a challenge and an opportunity. According to Canary Media, the looming electricity

AI And Hollywood's Next Golden AgeAI And Hollywood's Next Golden AgeApr 29, 2025 am 11:09 AM

Generative AI is revolutionizing film and television production. Luma's Ray 2 model, as well as Runway's Gen-4, OpenAI's Sora, Google's Veo and other new models, are improving the quality of generated videos at an unprecedented speed. These models can easily create complex special effects and realistic scenes, even short video clips and camera-perceived motion effects have been achieved. While the manipulation and consistency of these tools still need to be improved, the speed of progress is amazing. Generative video is becoming an independent medium. Some models are good at animation production, while others are good at live-action images. It is worth noting that Adobe's Firefly and Moonvalley's Ma

Is ChatGPT Slowly Becoming AI's Biggest Yes-Man?Is ChatGPT Slowly Becoming AI's Biggest Yes-Man?Apr 29, 2025 am 11:08 AM

ChatGPT user experience declines: is it a model degradation or user expectations? Recently, a large number of ChatGPT paid users have complained about their performance degradation, which has attracted widespread attention. Users reported slower responses to models, shorter answers, lack of help, and even more hallucinations. Some users expressed dissatisfaction on social media, pointing out that ChatGPT has become “too flattering” and tends to verify user views rather than provide critical feedback. This not only affects the user experience, but also brings actual losses to corporate customers, such as reduced productivity and waste of computing resources. Evidence of performance degradation Many users have reported significant degradation in ChatGPT performance, especially in older models such as GPT-4 (which will soon be discontinued from service at the end of this month). this

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools