



The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com
##The author Zeng Qiulin graduated from Harbin Institute of Technology and received a master's degree from the National University of Singapore. Under the guidance of Professor Wang Bo and Academician Ling Xiaofeng, during his doctoral period, he mainly carried out theoretical demonstration, method and application research on the distribution of random time changes. Currently, he has published many academic papers in ICLR/AAAI/IEEE TNNLS.
Personal homepage: https://hardworkingpearl.github.io/
Distribution shifts over time in real-world machine learning applications is a common question. This situation is framed as time-varying domain generalization (EDG), where the goal is to enable the model to generalize well to unseen target domains in time-varying systems by learning underlying evolving patterns across domains and exploiting these patterns. However, due to the limited number of timestamps in the EDG dataset, existing methods encounter challenges in capturing the evolving dynamics and avoiding overfitting to sparse timestamps, which limits their generalization and adaptability to new tasks. To solve this problem, we propose a new method SDE-EDG, which collects the infinite subdivision grid evolution trajectory (IFGET) of the data distribution through continuous interpolation samples to overcome the problem of overfitting. . Furthermore, by exploiting the inherent ability of stochastic differential equations (SDEs) to capture continuous trajectories, we propose to align the trajectories modeled by SDEs with those of IFGET through maximum likelihood estimation, thereby achieving the capture of distribution evolution trends.- Paper title: Latent Trajectory Learning for Limited Timestamps under Distribution Shift over Time
- Paper link: https://openreview.net/pdf?id=bTMMNT7IdW
- Project link: https://github.com/HardworkingPearl/SDE-EDG-iclr2024
Method
Core Idea
To overcome this challenge, SDE-EDG proposes a novel approach by Construct an Infinitely Fined-Grid Evolving Trajectory (IFGET) to create consecutive interpolated samples in the latent representation space to bridge the gap between timestamps. In addition, SDE-EDG utilizes the inherent ability of Stochastic Differential Equations (SDEs) to capture continuous trajectory dynamics, and aligns the SDE modeled trajectories with IFGET through the path alignment regularizer to achieve cross-domain capture of evolving distribution trends. .Method details
1. Construct IFGET:First, SDE-EDG builds a sample-to-sample representation for each sample in the latent representation space. Correspondence, collect the evolution trajectory of each individual sample. For any sample of each category k at time , we search for the
closest to it in the feature space at time
for its corresponding sample in
:
Here is to calculate the distance between two vectors,
is the set of
samples sampled from the next field
.
This correspondence is then used to generate continuous interpolation samples, aiming to connect the time gaps between timestamp intervals and avoid overfitting of sparse timestamps,
Here is sampled from the Beta distribution. By collecting the timing trace
of the samples generated in the above way, we get IFGET.
2. Model trajectories using SDE:
SDE-EDG adopts neural SDE to model the continuous time trajectory of data in the latent space. Unlike traditional discrete timestamp-based models, SDE is naturally suitable for simulating continuous time trajectories. SDE-EDG models time series trajectories and can predict samples at any future time through samples at time
:
Here the feature space variable is It is predicted by the sample at time
,
is the drift function, and
is the diffusion function.
3. Path alignment and maximum likelihood estimation:
SDE-EDG trains the model by maximizing the likelihood estimation of IFGET,
The final training function is , and the first item is the error loss function for the prediction classification task.
4. Experiment
下表展示了 SDE-EDG 与其他基线方法在多个数据集上分类准确率的比较。这些数据集包括 Rotated Gaussian (RG), Circle (Cir), Rotated MNIST (RM), Portraits (Por), Caltran (Cal), PowerSupply (PS), 和 Ocular Disease (OD)。结果显示,SDE-EDG 在所有数据集上的平均准确率均优于其他方法。
下图提供了一个直观的比较,展示了 SDE-EDG 算法(左)与传统 DG 方法 IRM(右)在特征表示方面的差异。通过数据特征空间的可视化,我们可以观察到 SDE-EDG 学习到的特征表示具有明显的决策边界,其中不同类别的数据点被清晰地区分开来,以不同形状表示,并且不同域的数据以彩虹条的颜色区分。这表明 SDE-EDG 能够成功捕捉数据随时间演变的动态,并在特征空间中保持类别的可分性。相比之下,IRM 的特征表示则倾向于将数据点坍缩到单一方向,导致决策边界不明显,这反映出 IRM 在捕捉时变分布趋势方面的不足。
下图通过一系列子图深入展示了 SDE-EDG 算法在捕捉数据随时间演变的能力方面的优势。子图 (a) 提供了 Sine 数据集的真实标签分布,其中正例和负例用不同颜色的点表示,为后续的比较提供了基准。接着,子图 (b) 和 (c) 分别展示了基于 ERM 的传统方法和 SDE-EDG 算法对同一数据集的预测结果,通过对比可以看出 SDE-EDG 在捕捉数据演变模式上的明显优势。子图 (d) 和 (e) 进一步揭示了 SDE-EDG 学习到的演变路径,其中 (d) 展示了应用了路径对齐损失(最大似然损失函数)后的路径,而 (e) 展示了未应用该损失时的路径。通过这一对比,可以直观地看到路径对齐损失对于确保模型能够正确捕捉和表征数据随时间变化的重要性。
-
下图子图 (a) 展示了在 Portraits 数据集上,使用不同算法进行训练时的准确率收敛轨迹。这个子图提供了一个直观的视角,用以比较 SDE-EDG 算法与其他基线方法(如 ERM、MLDG、GI)在训练过程中性能的变化情况。通过观察训练准确率随时间推移的增长趋势,我们可以评估不同算法的学习能力和收敛速度。SDE-EDG 算法的收敛轨迹尤其值得关注,因为它揭示了该算法在适应不断演变的数据分布时的效率和稳定性。
下图子图 (b) 和 (c) 分别展示了 RMNIST 和 Circle 数据集上,SDE-EDG 算法在这些数据集上的表现显示出其在处理时变分布时的优越性,即使在面对较大时间跨度的目标域时,也能保持较高的准确率,这表明了 SDE-EDG 算法在捕捉和适应数据演变模式方面的强大能力。
下图子图 (d) 和 (e) 探讨了最大似然损失(Maximum Likelihood Loss)在 RMNIST 和 PowerSupply 数据集上对 SDE-EDG 性能的影响。通过改变正则化权重 α 的值,这两个子图展示了不同 α 设置对模型性能的具体影响。实验结果表明,适当的 α 值可以显著提高 SDE-EDG 在特定数据集上的性能,这强调了在实际应用中根据数据集特性和任务需求调整超参数的重要性。
结论
论文作者提出了一种新的 SDE-EDG 方法,用于建模时变域泛化(EDG)问题。方法涉及通过识别样本到样本的对应关系并生成连续插值样本来构建 IFGET。随后,作者采用随机微分方程(SDE)并将其与 IFGET 对齐进行训练。文章的贡献在于揭示了通过收集个体的时间轨迹来捕获演变模式的重要性,以及在时间间隔之间进行插值以减轻源时间戳数量有限的问题,这有效地防止了 SDE-EDG 对有限时间戳的过拟合。
The above is the detailed content of ICLR 2024 Oral | To deal with distribution shifts that change over time, the University of Western Ontario and others proposed a learning time series trajectory method. For more information, please follow other related articles on the PHP Chinese website!

PowerInfer提高了在消费级硬件上运行AI的效率上海交大团队最新推出了超强CPU/GPULLM高速推理引擎PowerInfer。PowerInfer和llama.cpp都在相同的硬件上运行,并充分利用了RTX4090上的VRAM。这个推理引擎速度有多快?在单个NVIDIARTX4090GPU上运行LLM,PowerInfer的平均token生成速率为13.20tokens/s,峰值为29.08tokens/s,仅比顶级服务器A100GPU低18%,可适用于各种LLM。PowerInfer与

要让大型语言模型(LLM)充分发挥其能力,有效的prompt设计方案是必不可少的,为此甚至出现了promptengineering(提示工程)这一新兴领域。在各种prompt设计方案中,思维链(CoT)凭借其强大的推理能力吸引了许多研究者和用户的眼球,基于其改进的CoT-SC以及更进一步的思维树(ToT)也收获了大量关注。近日,苏黎世联邦理工学院、Cledar和华沙理工大学的一个研究团队提出了更进一步的想法:思维图(GoT)。让思维从链到树到图,为LLM构建推理过程的能力不断得到提升,研究者也通

FATE2.0全面升级,推动隐私计算联邦学习规模化应用FATE开源平台宣布发布FATE2.0版本,作为全球领先的联邦学习工业级开源框架。此次更新实现了联邦异构系统之间的互联互通,持续增强了隐私计算平台的互联互通能力。这一进展进一步推动了联邦学习与隐私计算规模化应用的发展。FATE2.0以全面互通为设计理念,采用开源方式对应用层、调度、通信、异构计算(算法)四个层面进行改造,实现了系统与系统、系统与算法、算法与算法之间异构互通的能力。FATE2.0的设计兼容了北京金融科技产业联盟的《金融业隐私计算

近期,复旦大学自然语言处理团队(FudanNLP)推出LLM-basedAgents综述论文,全文长达86页,共有600余篇参考文献!作者们从AIAgent的历史出发,全面梳理了基于大型语言模型的智能代理现状,包括:LLM-basedAgent的背景、构成、应用场景、以及备受关注的代理社会。同时,作者们探讨了Agent相关的前瞻开放问题,对于相关领域的未来发展趋势具有重要价值。论文链接:https://arxiv.org/pdf/2309.07864.pdfLLM-basedAgent论文列表:

大型语言模型(LLM)被广泛应用于需要多个链式生成调用、高级提示技术、控制流以及与外部环境交互的复杂任务。尽管如此,目前用于编程和执行这些应用程序的高效系统却存在明显的不足之处。研究人员最近提出了一种新的结构化生成语言(StructuredGenerationLanguage),称为SGLang,旨在改进与LLM的交互性。通过整合后端运行时系统和前端语言的设计,SGLang使得LLM的性能更高、更易控制。这项研究也获得了机器学习领域的知名学者、CMU助理教授陈天奇的转发。总的来说,SGLang的

将不同的基模型象征为不同品种的狗,其中相同的「狗形指纹」表明它们源自同一个基模型。大模型的预训练需要耗费大量的计算资源和数据,因此预训练模型的参数成为各大机构重点保护的核心竞争力和资产。然而,与传统软件知识产权保护不同,对预训练模型参数盗用的判断存在以下两个新问题:1)预训练模型的参数,尤其是千亿级别模型的参数,通常不会开源。预训练模型的输出和参数会受到后续处理步骤(如SFT、RLHF、continuepretraining等)的影响,这使得判断一个模型是否基于另一个现有模型微调得来变得困难。无

IBM再度发力。随着AI系统的飞速发展,其能源需求也在不断增加。训练新系统需要大量的数据集和处理器时间,因此能耗极高。在某些情况下,执行一些训练好的系统,智能手机就能轻松胜任。但是,执行的次数太多,能耗也会增加。幸运的是,有很多方法可以降低后者的能耗。IBM和英特尔已经试验过模仿实际神经元行为设计的处理器。IBM还测试了在相变存储器中执行神经网络计算,以避免重复访问RAM。现在,IBM又推出了另一种方法。该公司的新型NorthPole处理器综合了上述方法的一些理念,并将其与一种非常精简的计算运行

Meta的视频合成新框架给我们带来了一些惊喜就今天的人工智能发展水平来说,文生图、图生视频、图像/视频风格迁移都已经不算什么难事。生成式AI天赋异禀,能够毫不费力地创建或修改内容。尤其是图像编辑,在以十亿规模数据集为基础预训练的文本到图像扩散模型的推动下,经历了重大发展。这股浪潮催生了大量图像编辑和内容创建应用。基于图像的生成模型所取得的成就基础上,下一个挑战的领域必然是为其增加「时间维度」,从而实现轻松而富有创意的视频编辑。一种直接策略是使用图像模型逐帧处理视频,然而,生成式图像编辑本身就具有


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver CS6
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
