search
HomeTechnology peripheralsAIWhy are small language models the next big thing in the AI ​​world?

Translator| Bugatti

##Reviewer| Chonglou

In the field of AI, tech giants have been racing to build increasingly massive Language model, Now there is a surprising new trend:Justis big. As progress on large language models (LLM) shows signs of stalling, researchers and developersIncreasingly, attention is turning to small language models (SLM) . This compact, efficient and adaptableAI model is challenging"Bigger is better" This concept is expected to change the way we treat AI development.

Why are small language models the next big thing in the AI ​​world?

Is LLM starting to stall?

V#ellum and HuggingFaceRecently released performance ComparisonResults show that the performance gap between LLMs is rapidly narrowing. This trend is ##has become ## or In these tasks, The performancedifference between the major models is very small. For exampleIn multiple choice questions,Claude 3 Opus,GPT-4## The accuracy rates of #Gemini Ultra

# are both above 83%, and In the inference task, Claude 3 Opus, GPT-4 and Gemini 1.5 Pro’s accuracy exceeds 92%. means , means is smaller Model (such as Mixtral 8x7B and Llama 2 - 70B) in a certain Some aspects also show surprising results, such as reasoning and multiple choice questions;

In these aspects, the performance of small modelis better thanSome bigmodels. This suggests that model size may not be the only factor that determines performance, but other aspects such as architecture, training data, and fine-tuning techniques may play an important role. Uber AIFormer person in charge, "Rebooting Artificial Intelligence" (Rebooting AI) Author of the book Gary Marcus said : "If take a look at the dozen articles published recently, they are generally the same as GPT-4At the same level. "Rebooting Artificial Intelligence" tells how to build a trustworthy #. ##AI

.

Marcus accepted an interview with IT foreign media "VentureBeat" on Thursday. "Some of the are a little better than GPT-4, but not as big I think everyone will say that GPT-4 is a big improvement over GPT-3.5 ,

In more than a year,

andthere hasn’t been any big leap. As the performance gap continues to narrow, more models show Quite competitive results, which raises the question of whether LLM has really begun to stagnate. If this trend continues, it may have a significant impact on the future development and deployment of language models, and people's attention to may change from blindlyIncrease model size to shiftto explore more effectively,more specialized

's ######architecture######. ############

LDisadvantages of LM method

Although it is undeniableLLMFunction is powerful, but it also has obvious shortcomings. First, training LLM requires a large amount of data, requiring billions or even trillions of parameters. This makes the training process extremely resource intensive, and the computing power required to train and run LLM And the energy consumptionis alsois amazing. This has resulted in high costs, making it difficult for small organizations or individuals to participate in core LLM development. At an event organized by MIT# last year, OpenAICEOSam Altman stated that the cost of training GPT-4 is at least 1 billion. The complexity of the tools and techniques required to deal with LLM also reduces a A steep learning curve is placed in front of developers

, further limiting accessibility. From model training to build and deployment, developers face long cycle times, which slows down development andExperiment speed. A recent paper from the University of Cambridge showed that companiesdeployeda singlemachine learningmodelIt may take 90 days or longer . Another important problem with LLMs is that they tend to hallucinate -generate Output that seems reasonable but is not actually true. This stems from the way LLM is trained to predict the next most likely word based on patterns in the training data, rather than really knowinginformation

. As a result, LLMs can confidently make false statements, fabricate facts, or combine unrelated concepts in absurd ways. Detecting and mitigating this illusionphenomenon is critical to developing reliable language modelsface The big and difficult problem. Marcus Warning: "If you use LLM to solve Majorproblem,You

don’t want to insult the client,get the wrong medical information, or use it to Driving a car. That's still a problem. The scale and black-box nature of LLMs also makes them difficult. Interpretation and debugging, Interpretation and debuggingForIn the output of the modelBuild trust Crucial. Bias in training data and algorithms can lead to unfair, inaccurate or even harmful outputs. As we saw in GoogleGemini, making LLM

"Secure" And reliable technology can also reduce its effectiveness. Additionally, the concentrated nature of LLMs has raised concerns about the concentration of power and control in the hands of a few large technology companies. Small language model (SLM) appearsThis When the little language model appeared. SLM is a streamlined version of LLM, with fewer parameters and simpler design.

The data and training time they require is shorter,

only takes a few minutes or hours, whereas LLM takes days. This makes SLM deployment on local or small devices more efficient and simpler. One of the main advantages of SLMs is their suitability for specific application environments. Because their focus on a rangeis narrower and requires less data, So it is easier to fine-tune for a specific domain or task than a large general model. This customization enables companies to create SLMs that are very

# effective for their specific needs, such as Sentiment analysis, named entity recognition, or domain-specific question answering. The specialized nature of SLM can improve its performance and efficiency in these target applicationenvironments compared to using a general-purpose model.

Another benefit of SLM is that it promises to enhance privacy and security. With a smaller code base and simpler architecture, SLM is easier to audit and less likely to introduce unexpected vulnerabilities. This makes them attractive for application

this leading to serious consequences. Additionally, SLMs have reduced computational requirements, making them more suitable for running on local devices or local servers rather than relying on cloud infrastructure. This local processing can further improve data security and reduce the exposure of data##risk. Compared with LLM, SLM is less prone to undetected hallucinations in specific areas. SLM is typically used narrower, more specific to the intended domain or application environment Training on targeted datasets helps the model learn the patterns, vocabulary, and information most relevant to its task. This

reduces the

possibility of generating irrelevant, unexpected, or inconsistent output. Due to using fewer parameters and a leaner architecture, SLM is less prone to capturing and amplifying noise in training data sounds or wrong.

Clem Delangue, CEO of AI startup HuggingFace, said that up to 99% of use cases can be solved and predicted using SLM 2024 will be the year of SLM

. HuggingFace's platform enables developers to build, train and deploy machine learning models, and the company announced a strategic partnership with Google earlier this year. The two companies subsequently integrated HuggingFace into Google's Vertex AI, allowing developers to quickly deploy thousands of models through Google's Vertex Model Garden. Google Gemma is sought afterwill initially LLM After giving up its advantage to OpenAI, Google is actively seizing the

SLM opportunity. Back in February,

Google launched Gemma, a new family of small language models designed to improve efficiency and user-friendliness. Like other SLMs, Gemma models can run on a variety of common devices, such as smartphones, tablets or laptops, without requiring special hardware or Comprehensive optimization. Since the release of Gemma, trained The model has been downloaded over 400,000 times on HuggingFace in the last month, and has several exciting projects

. For example,

Cerule is a feature powerful image and language model that combines Gemma 2B with Google's SigLIP, usedTrained on a large number of image and text data sets. Cerule leverages efficient data selection techniques to achieve high performance without requiring large amounts of data or computation. This means Cerule could be a good fit for emerging edge computing use cases. Another example is CodeGemma, which is a specialized version of Gemma that focuses on programming# and mathematical reasoning . CodeGemma offers three different models for various coding related activities, making advanced programming tools accessible to developers Easier to access and more

efficient.

The huge

potential of small language models

As the AI ​​community continues to explore the potential of small language models, faster development cycles, greater efficiency, and the ability to customize models to specific needsetc.advantagesbecome more and more obvious. SLM is expected to bring cost-effective and targeted solutions through program, popularizes access to AI and promotes industry innovation. Deploying SLM at the edge provides real-time, personalization and security for industries such as finance, entertainment, automotive systems, education, e-commerce and healthcare. #Application system brings new possibilities.

By processing data locally and reducing reliance on cloud infrastructure, Edge computing combined with SLM can shorten the Response times, enhanced data privacy and improved user experience. This decentralized AIapproach promises tochange how businesses and consumers interact with technology Interactive ways to create a more personalized and intuitive experience in the real world. Since LLM faces challenges related to computing resources and may encounter performance bottlenecks, the rise of LLM is expected to make the AI ecosystem Continue to develop at an amazing pace.

Original title: Why small language models are the next big thing in AI By James Thomason

The above is the detailed content of Why are small language models the next big thing in the AI ​​world?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Tesla's Robovan Was The Hidden Gem In 2024's Robotaxi TeaserTesla's Robovan Was The Hidden Gem In 2024's Robotaxi TeaserApr 22, 2025 am 11:48 AM

Since 2008, I've championed the shared-ride van—initially dubbed the "robotjitney," later the "vansit"—as the future of urban transportation. I foresee these vehicles as the 21st century's next-generation transit solution, surpas

Sam's Club Bets On AI To Eliminate Receipt Checks And Enhance RetailSam's Club Bets On AI To Eliminate Receipt Checks And Enhance RetailApr 22, 2025 am 11:29 AM

Revolutionizing the Checkout Experience Sam's Club's innovative "Just Go" system builds on its existing AI-powered "Scan & Go" technology, allowing members to scan purchases via the Sam's Club app during their shopping trip.

Nvidia's AI Omniverse Expands At GTC 2025Nvidia's AI Omniverse Expands At GTC 2025Apr 22, 2025 am 11:28 AM

Nvidia's Enhanced Predictability and New Product Lineup at GTC 2025 Nvidia, a key player in AI infrastructure, is focusing on increased predictability for its clients. This involves consistent product delivery, meeting performance expectations, and

Exploring the Capabilities of Google's Gemma 2 ModelsExploring the Capabilities of Google's Gemma 2 ModelsApr 22, 2025 am 11:26 AM

Google's Gemma 2: A Powerful, Efficient Language Model Google's Gemma family of language models, celebrated for efficiency and performance, has expanded with the arrival of Gemma 2. This latest release comprises two models: a 27-billion parameter ver

The Next Wave of GenAI: Perspectives with Dr. Kirk Borne - Analytics VidhyaThe Next Wave of GenAI: Perspectives with Dr. Kirk Borne - Analytics VidhyaApr 22, 2025 am 11:21 AM

This Leading with Data episode features Dr. Kirk Borne, a leading data scientist, astrophysicist, and TEDx speaker. A renowned expert in big data, AI, and machine learning, Dr. Borne offers invaluable insights into the current state and future traje

AI For Runners And Athletes: We're Making Excellent ProgressAI For Runners And Athletes: We're Making Excellent ProgressApr 22, 2025 am 11:12 AM

There were some very insightful perspectives in this speech—background information about engineering that showed us why artificial intelligence is so good at supporting people’s physical exercise. I will outline a core idea from each contributor’s perspective to demonstrate three design aspects that are an important part of our exploration of the application of artificial intelligence in sports. Edge devices and raw personal data This idea about artificial intelligence actually contains two components—one related to where we place large language models and the other is related to the differences between our human language and the language that our vital signs “express” when measured in real time. Alexander Amini knows a lot about running and tennis, but he still

Jamie Engstrom On Technology, Talent And Transformation At CaterpillarJamie Engstrom On Technology, Talent And Transformation At CaterpillarApr 22, 2025 am 11:10 AM

Caterpillar's Chief Information Officer and Senior Vice President of IT, Jamie Engstrom, leads a global team of over 2,200 IT professionals across 28 countries. With 26 years at Caterpillar, including four and a half years in her current role, Engst

New Google Photos Update Makes Any Photo Pop With Ultra HDR QualityNew Google Photos Update Makes Any Photo Pop With Ultra HDR QualityApr 22, 2025 am 11:09 AM

Google Photos' New Ultra HDR Tool: A Quick Guide Enhance your photos with Google Photos' new Ultra HDR tool, transforming standard images into vibrant, high-dynamic-range masterpieces. Ideal for social media, this tool boosts the impact of any photo,

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software