本文实例讲述了python实现的系统实用log类。分享给大家供大家参考。具体如下:
每个系统都必不可少会需要一个log类,方便了解系统的运行状况和排错,python本身已经提供了一个logger了,很强大,只要稍微封装一下就可以放到自己的系统了,下面是我自己的log类
文件名:logger.py
"""This module takes care of the logging logger helps in creating a logging system for the application Logging is initialised by function LoggerInit. """ import logging import os import sys class logger(object): """Class provides methods to perform logging.""" m_logger = None def __init__(self, opts, logfile): """Set the default logging path.""" self.opts = opts self.myname = 'dxscs' self.logdir = '.' self.logfile = logfile self.filename = os.path.join(self.logdir, self.logfile) def loginit(self): """Calls function LoggerInit to start initialising the logging system.""" logdir = os.path.normpath(os.path.expanduser(self.logdir)) self.logfilename = os.path.normpath(os.path.expanduser(self.filename)) if not os.path.isdir(logdir): try: os.mkdir(logdir) except OSError, e: msg = ('(%s)'%e) print msg sys.exit(1) self.logger_init(self.myname) def logger_init(self, loggername): """Initialise the logging system. This includes logging to console and a file. By default, console prints messages of level WARN and above and file prints level INFO and above. In DEBUG mode (-D command line option) prints messages of level DEBUG and above to both console and file. Args: loggername: String - Name of the application printed along with the log message. """ fileformat = '[%(asctime)s] %(name)s: [%(filename)s: %(lineno)d]: %(levelname)-8s: %(message)s' logger.m_logger = logging.getLogger(loggername) logger.m_logger.setLevel(logging.INFO) self.console = logging.StreamHandler() self.console.setLevel(logging.CRITICAL) consformat = logging.Formatter(fileformat) self.console.setFormatter(consformat) self.filelog = logging.FileHandler(filename=self.logfilename, mode='w+') self.filelog.setLevel(logging.INFO) self.filelog.setFormatter(consformat) logger.m_logger.addHandler(self.filelog) logger.m_logger.addHandler(self.console) if self.opts['debug'] == True: self.console.setLevel(logging.DEBUG) self.filelog.setLevel(logging.DEBUG) logger.m_logger.setLevel(logging.DEBUG) if not self.opts['nofork']: self.console.setLevel(logging.WARN) def logstop(self): """Shutdown logging process.""" logging.shutdown() #test if __name__ == '__main__': #debug mode & not in daemon opts = {'debug':True,'nofork':True} log = logger(opts, 'dxscs_source.log') log.loginit() log.m_logger.info('hello,world')
执行结果:
终端和文件中都显示有:[2012-09-06 16:56:01,498] dxscs: [logger.py: 88]: INFO : hello,world
如果只需要显示在文件中可以将debug和nofork选项都置为false
希望本文所述对大家的Python程序设计有所帮助。

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

WebStorm Mac version
Useful JavaScript development tools
