比如说你有匹配某个模式的一堆视图,以及一个并不匹配这个模式但视图逻辑是一样的URL。 这种情况下,你可以通过向同一个视图传递额外URLconf参数来伪造URL值的捕捉。
例如,你可能有一个显示某一个特定日子的某些数据的应用,URL类似这样的:
/mydata/jan/01/ /mydata/jan/02/ /mydata/jan/03/ # ... /mydata/dec/30/ /mydata/dec/31/
这太简单了,你可以在一个URLconf中捕捉这些值,像这样(使用命名组的方法):
urlpatterns = patterns('', (r'^mydata/(?P<month>\w{3})/(?P<day>\d\d)/$', views.my_view), )
然后视图函数的原型看起来会是:
def my_view(request, month, day): # ....
这种解决方案很直接,没有用到什么你没见过的技术。 当你想添加另外一个使用 my_view 视图但不包含month和/或者day的URL时,问题就出现了。
比如你可能会想增加这样一个URL, /mydata/birthday/ , 这个URL等价于 /mydata/jan/06/ 。这时你可以这样利用额外URLconf参数:
urlpatterns = patterns('', (r'^mydata/birthday/$', views.my_view, {'month': 'jan', 'day': '06'}), (r'^mydata/(?P<month>\w{3})/(?P<day>\d\d)/$', views.my_view), )
在这里最帅的地方莫过于你根本不用改变你的视图函数。 视图函数只会关心它 获得 了 参数,它不会去管这些参数到底是捕捉回来的还是被额外提供的。month和day

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

NumPyallowsforvariousoperationsonarrays:1)Basicarithmeticlikeaddition,subtraction,multiplication,anddivision;2)Advancedoperationssuchasmatrixmultiplication;3)Element-wiseoperationswithoutexplicitloops;4)Arrayindexingandslicingfordatamanipulation;5)Ag

ArraysinPython,particularlythroughNumPyandPandas,areessentialfordataanalysis,offeringspeedandefficiency.1)NumPyarraysenableefficienthandlingoflargedatasetsandcomplexoperationslikemovingaverages.2)PandasextendsNumPy'scapabilitieswithDataFramesforstruc


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor
