search
HomeBackend DevelopmentPython Tutorial将Python的Django框架与认证系统整合的方法

将Django与其他现有认证系统的用户名和密码或者认证方法进行整合是可以办到的。

例如,你所在的公司也许已经安装了LDAP,并且为每一个员工都存储了相应的用户名和密码。 如果用户在LDAP和基于Django的应用上拥有独立的账号,那么这时无论对于网络管理员还是用户自己来说,都是一件很令人头痛的事儿。

为了解决这样的问题,Django认证系统能让您以插件方式与其他认证资源进行交互。 您可以覆盖Diango默认的基于数据库的模式,您还可以使用默认的系统与其他系统进行交互。
指定认证后台

在后台,Django维护了一个用于检查认证的后台列表。 当某个人调用 django.contrib.auth.authenticate() (如14章中所述)时,Django会尝试对其认证后台进行遍历认证。 如果第一个认证方法失败,Django会尝试认证第二个,以此类推,一直到尝试完。

认证后台列表在AUTHENTICATION_BACKENDS设置中进行指定。 它应该是指向知道如何认证的Python类的Python路径的名字数组。 这些类可以在你Python路径的任何位置。

默认情况下,AUTHENTICATION_BACKENDS被设置为如下:

('django.contrib.auth.backends.ModelBackend',)

那就是检测Django用户数据库的基本认证模式。

AUTHENTICATION_BACKENDS的顺序很重要,如果用户名和密码在多个后台中都是有效的,那么Django将会在第一个正确匹配后停止进一步的处理。
编写认证后台

一个认证后台其实就是一个实现了如下两个方法的类: get_user(id) 和 authenticate(**credentials) 。

方法 get_user 需要一个参数 id ,这个 id 可以是用户名,数据库ID或者其他任何数值,该方法会返回一个 User 对象。

方法 authenticate 使用证书作为关键参数。 大多数情况下,该方法看起来如下:

class MyBackend(object):
  def authenticate(self, username=None, password=None):
    # Check the username/password and return a User.

但是有时候它也可以认证某个短语,例如:

class MyBackend(object):
  def authenticate(self, token=None):
    # Check the token and return a User.

每一个方法中, authenticate 都应该检测它所获取的证书,并且当证书有效时,返回一个匹配于该证书的 User 对象,如果证书无效那么返回 None 。 如果它们不合法,就返回None。

Django管理系统紧密连接于其自己后台数据库的 User 对象。 实现这个功能的最好办法就是为您的后台数据库(如LDAP目录,外部SQL数据库等)中的每个用户都创建一个对应的Django User对象。 您可以提前写一个脚本来完成这个工作,也可以在某个用户第一次登陆的时候在 authenticate 方法中进行实现。

以下是一个示例后台程序,该后台用于认证定义在 setting.py 文件中的username和password变量,并且在该用户第一次认证的时候创建一个相应的Django User 对象。

from django.conf import settings
from django.contrib.auth.models import User, check_password

class SettingsBackend(object):
  """
  Authenticate against the settings ADMIN_LOGIN and ADMIN_PASSWORD.

  Use the login name, and a hash of the password. For example:

  ADMIN_LOGIN = 'admin'
  ADMIN_PASSWORD = 'sha1$4e987$afbcf42e21bd417fb71db8c66b321e9fc33051de'
  """
  def authenticate(self, username=None, password=None):
    login_valid = (settings.ADMIN_LOGIN == username)
    pwd_valid = check_password(password, settings.ADMIN_PASSWORD)
    if login_valid and pwd_valid:
      try:
        user = User.objects.get(username=username)
      except User.DoesNotExist:
        # Create a new user. Note that we can set password
        # to anything, because it won't be checked; the password
        # from settings.py will.
        user = User(username=username, password='get from settings.py')
        user.is_staff = True
        user.is_superuser = True
        user.save()
      return user
    return None

  def get_user(self, user_id):
    try:
      return User.objects.get(pk=user_id)
    except User.DoesNotExist:
      return None

更多认证模块的后台, 参考Django文档。

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python vs. C  : Memory Management and ControlPython vs. C : Memory Management and ControlApr 19, 2025 am 12:17 AM

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python for Scientific Computing: A Detailed LookPython for Scientific Computing: A Detailed LookApr 19, 2025 am 12:15 AM

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Python and C  : Finding the Right ToolPython and C : Finding the Right ToolApr 19, 2025 am 12:04 AM

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python for Data Science and Machine LearningPython for Data Science and Machine LearningApr 19, 2025 am 12:02 AM

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.