search
HomeBackend DevelopmentPython Tutorial浅谈Python单向链表的实现

链表由一系列不必在内存中相连的结构构成,这些对象按线性顺序排序。每个结构含有表元素和指向后继元素的指针。最后一个单元的指针指向NULL。为了方便链表的删除与插入操作,可以为链表添加一个表头。

删除操作可以通过修改一个指针来实现。

插入操作需要执行两次指针调整。

1. 单向链表的实现

1.1 Node实现

    每个Node分为两部分。一部分含有链表的元素,可以称为数据域;另一部分为一指针,指向下一个Node。

class Node():
  __slots__=['_item','_next']  #限定Node实例的属性
  def __init__(self,item):
    self._item=item
    self._next=None   #Node的指针部分默认指向None
  def getItem(self):
    return self._item
  def getNext(self):
    return self._next
  def setItem(self,newitem):
    self._item=newitem
  def setNext(self,newnext):
    self._next=newnext

1.2 SinglelinkedList的实现

class SingleLinkedList(): 
  def __init__(self):
    self._head=None  #初始化链表为空表
    self._size=0

1.3 检测链表是否为空

def isEmpty(self):
  return self._head==None 

1.4 add在链表前端添加元素

def add(self,item):
  temp=Node(item)
  temp.setNext(self._head)
  self._head=temp

1.5 append在链表尾部添加元素

def append(self,item):
  temp=Node(item)
  if self.isEmpty():
    self._head=temp  #若为空表,将添加的元素设为第一个元素
  else:
    current=self._head
    while current.getNext()!=None:
      current=current.getNext()  #遍历链表
    current.setNext(temp)  #此时current为链表最后的元素
  

1.6 search检索元素是否在链表中

def search(self,item):
  current=self._head
  founditem=False
  while current!=None and not founditem:
    if current.getItem()==item:
      founditem=True
    else:
      current=current.getNext()
  return founditem

1.7 index索引元素在链表中的位置

def index(self,item):
  current=self._head
  count=0
  found=None
  while current!=None and not found:
    count+=1
    if current.getItem()==item:
      found=True
    else:
      current=current.getNext()
  if found:
    return count
  else:
    raise ValueError,'%s is not in linkedlist'%item

1.8 remove删除链表中的某项元素

def remove(self,item):
  current=self._head
  pre=None
  while current!=None:
    if current.getItem()==item:
      if not pre:
        self._head=current.getNext()
      else:
        pre.setNext(current.getNext())
      break
    else:
      pre=current
      current=current.getNext()

1.9 insert链表中插入元素

def insert(self,pos,item):
  if pos<=1:
    self.add(item)
  elif pos>self.size():
    self.append(item)
  else:
    temp=Node(item)
    count=1
    pre=None
    current=self._head
    while count<pos:
      count+=1
      pre=current
      current=current.getNext()
    pre.setNext(temp)
    temp.setNext(current)

全部代码

class Node():
  __slots__=['_item','_next']
  def __init__(self,item):
    self._item=item
    self._next=None
  def getItem(self):
    return self._item
  def getNext(self):
    return self._next
  def setItem(self,newitem):
    self._item=newitem
  def setNext(self,newnext):
    self._next=newnext
     
class SingleLinkedList(): 
  def __init__(self):
    self._head=None #初始化为空链表
  def isEmpty(self):
    return self._head==None
  def size(self):
    current=self._head
    count=0
    while current!=None:
      count+=1
      current=current.getNext()
    return count
  def travel(self):
    current=self._head
    while current!=None:
      print current.getItem()
      current=current.getNext()
  def add(self,item):
    temp=Node(item)
    temp.setNext(self._head)
    self._head=temp
 
  def append(self,item):
    temp=Node(item)
    if self.isEmpty():
      self._head=temp  #若为空表,将添加的元素设为第一个元素
    else:
      current=self._head
      while current.getNext()!=None:
        current=current.getNext()  #遍历链表
      current.setNext(temp)  #此时current为链表最后的元素
  def search(self,item):
    current=self._head
    founditem=False
    while current!=None and not founditem:
      if current.getItem()==item:
        founditem=True
      else:
        current=current.getNext()
    return founditem
  def index(self,item):
    current=self._head
    count=0
    found=None
    while current!=None and not found:
      count+=1
      if current.getItem()==item:
        found=True
      else:
        current=current.getNext()
    if found:
      return count
    else:
      raise ValueError,'%s is not in linkedlist'%item       
  def remove(self,item):
    current=self._head
    pre=None
    while current!=None:
      if current.getItem()==item:
        if not pre:
          self._head=current.getNext()
        else:
          pre.setNext(current.getNext())
        break
      else:
        pre=current
        current=current.getNext()           
  def insert(self,pos,item):
    if pos<=1:
      self.add(item)
    elif pos>self.size():
      self.append(item)
    else:
      temp=Node(item)
      count=1
      pre=None
      current=self._head
      while count<pos:
        count+=1
        pre=current
        current=current.getNext()
      pre.setNext(temp)
      temp.setNext(current)
 
if __name__=='__main__':
  a=SingleLinkedList()
  for i in range(1,10):
    a.append(i)
  print a.size()
  a.travel()
  print a.search(6)
  print a.index(5)
  a.remove(4)
  a.travel()
  a.insert(4,100)
  a.travel()

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Merging Lists in Python: Choosing the Right MethodMerging Lists in Python: Choosing the Right MethodMay 14, 2025 am 12:11 AM

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

How to concatenate two lists in python 3?How to concatenate two lists in python 3?May 14, 2025 am 12:09 AM

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Python concatenate list stringsPython concatenate list stringsMay 14, 2025 am 12:08 AM

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

Python execution, what is that?Python execution, what is that?May 14, 2025 am 12:06 AM

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Python: what are the key featuresPython: what are the key featuresMay 14, 2025 am 12:02 AM

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python: compiler or Interpreter?Python: compiler or Interpreter?May 13, 2025 am 12:10 AM

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Python For Loop vs While Loop: When to Use Which?Python For Loop vs While Loop: When to Use Which?May 13, 2025 am 12:07 AM

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Python loops: The most common errorsPython loops: The most common errorsMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software