链表由一系列不必在内存中相连的结构构成,这些对象按线性顺序排序。每个结构含有表元素和指向后继元素的指针。最后一个单元的指针指向NULL。为了方便链表的删除与插入操作,可以为链表添加一个表头。
删除操作可以通过修改一个指针来实现。
插入操作需要执行两次指针调整。
1. 单向链表的实现
1.1 Node实现
每个Node分为两部分。一部分含有链表的元素,可以称为数据域;另一部分为一指针,指向下一个Node。
class Node(): __slots__=['_item','_next'] #限定Node实例的属性 def __init__(self,item): self._item=item self._next=None #Node的指针部分默认指向None def getItem(self): return self._item def getNext(self): return self._next def setItem(self,newitem): self._item=newitem def setNext(self,newnext): self._next=newnext
1.2 SinglelinkedList的实现
class SingleLinkedList(): def __init__(self): self._head=None #初始化链表为空表 self._size=0
1.3 检测链表是否为空
def isEmpty(self): return self._head==None
1.4 add在链表前端添加元素
def add(self,item): temp=Node(item) temp.setNext(self._head) self._head=temp
1.5 append在链表尾部添加元素
def append(self,item): temp=Node(item) if self.isEmpty(): self._head=temp #若为空表,将添加的元素设为第一个元素 else: current=self._head while current.getNext()!=None: current=current.getNext() #遍历链表 current.setNext(temp) #此时current为链表最后的元素
1.6 search检索元素是否在链表中
def search(self,item): current=self._head founditem=False while current!=None and not founditem: if current.getItem()==item: founditem=True else: current=current.getNext() return founditem
1.7 index索引元素在链表中的位置
def index(self,item): current=self._head count=0 found=None while current!=None and not found: count+=1 if current.getItem()==item: found=True else: current=current.getNext() if found: return count else: raise ValueError,'%s is not in linkedlist'%item
1.8 remove删除链表中的某项元素
def remove(self,item): current=self._head pre=None while current!=None: if current.getItem()==item: if not pre: self._head=current.getNext() else: pre.setNext(current.getNext()) break else: pre=current current=current.getNext()
1.9 insert链表中插入元素
def insert(self,pos,item): if pos<=1: self.add(item) elif pos>self.size(): self.append(item) else: temp=Node(item) count=1 pre=None current=self._head while count<pos: count+=1 pre=current current=current.getNext() pre.setNext(temp) temp.setNext(current)
全部代码
class Node(): __slots__=['_item','_next'] def __init__(self,item): self._item=item self._next=None def getItem(self): return self._item def getNext(self): return self._next def setItem(self,newitem): self._item=newitem def setNext(self,newnext): self._next=newnext class SingleLinkedList(): def __init__(self): self._head=None #初始化为空链表 def isEmpty(self): return self._head==None def size(self): current=self._head count=0 while current!=None: count+=1 current=current.getNext() return count def travel(self): current=self._head while current!=None: print current.getItem() current=current.getNext() def add(self,item): temp=Node(item) temp.setNext(self._head) self._head=temp def append(self,item): temp=Node(item) if self.isEmpty(): self._head=temp #若为空表,将添加的元素设为第一个元素 else: current=self._head while current.getNext()!=None: current=current.getNext() #遍历链表 current.setNext(temp) #此时current为链表最后的元素 def search(self,item): current=self._head founditem=False while current!=None and not founditem: if current.getItem()==item: founditem=True else: current=current.getNext() return founditem def index(self,item): current=self._head count=0 found=None while current!=None and not found: count+=1 if current.getItem()==item: found=True else: current=current.getNext() if found: return count else: raise ValueError,'%s is not in linkedlist'%item def remove(self,item): current=self._head pre=None while current!=None: if current.getItem()==item: if not pre: self._head=current.getNext() else: pre.setNext(current.getNext()) break else: pre=current current=current.getNext() def insert(self,pos,item): if pos<=1: self.add(item) elif pos>self.size(): self.append(item) else: temp=Node(item) count=1 pre=None current=self._head while count<pos: count+=1 pre=current current=current.getNext() pre.setNext(temp) temp.setNext(current) if __name__=='__main__': a=SingleLinkedList() for i in range(1,10): a.append(i) print a.size() a.travel() print a.search(6) print a.index(5) a.remove(4) a.travel() a.insert(4,100) a.travel()

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 Linux new version
SublimeText3 Linux latest version

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
