最近工作转型到数据开发领域,想在本地搭建一个数据开发环境。自己有三年python开发经验,马上想到使用numpy、scipy、sklearn、pandas搭建一套数据开发环境。
ubuntu的环境,百度中文章比较多,搭建起来非常顺利。MAC环境的资料比较少,百度出来的,已经不对了,那我就来补充一篇吧。
MAC自带python,python的安装我就不多说了。
安装pip
我喜欢用pip安装python库,非常方便,pip的安装只能用源码了。
#下载源代码 https://pypi.python.org/pypi/pip 我去下载的时候是 8.0.2版本 #解压 tar xvzf pip8.0.2.tar.gz #安装 cd pip-1.4.1 python setup.py install
安装numpy
numpy是基础,是scipy等其它库等基础,没什么依赖,安装起来相对简单。
pip install numpy
安装brew
numpy安装之后,就是安装scipy了,为什么插了一竿子呢?它依赖fortran库,fortran库的安装需要用到MAC的包管理工具homebrew
#下载brew curl -LsSf http://github.com/mxcl/homebrew/tarball/master sudo tar xvz -C/usr/local --strip 1
安装scipy
scipy 是sklearn的基础,但它依赖gfortran库,gfortran已经融入到gcc库中,安装gcc就好了,有了brew安装什么包都变得非常简单了。
#安装gcc库 brew install gcc #安装scipy pip install scipy 后面的安装,就按步就班了 #安装matplotlib,方便把数据绘图显示出来 pip install matplotlib #安装sklearn,我理解这个安装必须在pandas之前 pip install -U numpy scipy scikit-learn #安装pandas pip install pandas
到这里环境就搭建好了,开搞吧,其实搭起来也非常简单。提醒下,安装时注意权限,如果需要权限就在前面加个sudo。

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
