search
HomeBackend DevelopmentPython Tutorial一步步解析Python斗牛游戏的概率

过年回家,都会约上亲朋好友聚聚会,会上经常会打麻将,斗地主,斗牛。在这些游戏中,斗牛是最受欢迎的,因为可以很多人一起玩,而且没有技术含量,都是看运气(专业术语是概率)。
斗牛的玩法是:

  • 1、把牌中的JQK都拿出来
  • 2、每个人发5张牌
  • 3、如果5张牌中任意三张加在一起是10的 倍数,就是有牛。剩下两张牌的和的10的余数就是牛数。

牌的大小:

4条 > 3条 > 牛十 > 牛九 > …… > 牛一 >没有牛

而这些牌出现的概率是有多少呢?

由于只有四十张牌,所以采用了既简单,又有效率的方法枚举来计算。
计算的结果:

  • 所有牌的组合数:658008
  • 出现四条的组合数:360,概率 :0.05%
  • 出现三条的组合数:25200,概率 :3.83%
  • 出现牛十的组合数:42432,概率 :6.45%
  • 出现牛九或牛八的组合数:87296,概率 :13.27%
  • 出现牛一到牛七的组合数:306112,概率 :46.52%
  • 出现没有牛的组合数:196608,概率 :29.88%

所以有七成的概率是有牛或以上的,所以如果你经常遇到没有牛,说明你的运气非常差或者本来是有牛的,但是你没有找出来。

Python源代码:

# encoding=utf-8
__author__ = 'kevinlu1010@qq.com'
import os
import cPickle

from copy import copy
from collections import Counter
import itertools
'''
计算斗牛游戏的概率
'''

class Poker():
  '''
  一张牌
  '''

  def __init__(self, num, type):
    self.num = num # 牌数
    self.type = type # 花色


class GamePoker():
  '''
  一手牌,即5张Poker
  '''
  COMMON_NIU = 1 # 普通的牛,即牛一-牛七
  NO_NIU = 0 # 没有牛
  EIGHT_NINE_NIU = 2 # 牛九或牛八
  TEN_NIU = 3 # 牛十
  THREE_SAME = 4 # 三条
  FOUR_SAME = 5 # 四条

  def __init__(self, pokers):
    assert len(pokers) == 5
    self.pokers = pokers
    self.num_pokers = [p.num for p in self.pokers]
    # self.weight = None # 牌的权重,权重大的牌胜
    # self.money_weight = None # 如果该牌赢,赢钱的权重
    self.result = self.sumary()

  def is_niu(self):
    '''
    是否有牛
    :return:
    '''
    # if self.is_three_same():
    # return 0
    for three in itertools.combinations(self.num_pokers, 3):
      if sum(three) % 10 == 0:
        left = copy(self.num_pokers)
        for item in three:
          left.remove(item)
        point = sum(left) % 10
        return 10 if point == 0 else point

    return 0

  def is_three_same(self):
    '''
    是否3条
    :return:
    '''
    # if self.is_four_same():
    # return 0
    count = Counter([p.num for p in self.pokers])
    for num in count:
      if count[num] == 3:
        return num
    return 0

  def is_four_same(self):
    '''
    是否4条
    :return:
    '''
    count = Counter([p.num for p in self.pokers])
    for num in count:
      if count[num] == 4:
        return num
    return 0

  def sumary(self):
    '''
    计算牌
    '''
    if self.is_four_same():
      return GamePoker.FOUR_SAME
    if self.is_three_same():
      return GamePoker.THREE_SAME
    niu_point = self.is_niu()
    if niu_point in (8, 9):
      return GamePoker.EIGHT_NINE_NIU
    elif niu_point == 10:
      return GamePoker.TEN_NIU
    elif niu_point > 0:
      return GamePoker.COMMON_NIU
    else:
      return GamePoker.NO_NIU

def get_all_pokers():
  '''
  生成所有的Poker,共四十个
  :return:
  '''
  pokers = []
  for i in range(1, 11):
    for j in ('A', 'B', 'C', 'D'):
      pokers.append(Poker(i, j))

  return pokers


def get_all_game_poker(is_new=0):
  '''
  生成所有game_poker
  :param pokers:
  :return:
  '''
  pokers = get_all_pokers()
  game_pokers = []

  if not is_new and os.path.exists('game_pokers'):
    with open('game_pokers', 'r') as f:
      return cPickle.loads(f.read())

  for pokers in itertools.combinations(pokers, 5): # 5代表五张牌
    game_pokers.append(GamePoker(pokers))
  with open('game_pokers', 'w') as f:
    f.write(cPickle.dumps(game_pokers))
  return game_pokers


def print_rate(game_pokers):
  total_num = float(len(game_pokers))
  four_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.FOUR_SAME])
  three_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.THREE_SAME])
  ten_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.TEN_NIU])
  eight_nine_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.EIGHT_NINE_NIU])
  common_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.COMMON_NIU])
  no_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.NO_NIU])
  print '所有牌的组合数:%d' % total_num
  print '出现四条的组合数:%d,概率 :%.2f%%' % (four_num, four_num * 100 / total_num)
  print '出现三条的组合数:%d,概率 :%.2f%%' % (three_num, three_num * 100 / total_num)
  print '出现牛十的组合数:%d,概率 :%.2f%%' % (ten_num, ten_num * 100 / total_num)
  print '出现牛九或牛八的组合数:%d,概率 :%.2f%%' % (eight_nine_num, eight_nine_num * 100 / total_num)
  print '出现牛一到牛七的组合数:%d,概率 :%.2f%%' % (common_num, common_num * 100 / total_num)
  print '出现没有牛的组合数:%d,概率 :%.2f%%' % (no_num, no_num * 100 / total_num)


def main():
  game_pokers = get_all_game_poker() # 658008种
  print_rate(game_pokers)


main()

以上就是Python计算斗牛游戏的概率相关内容,希望对大家的学习有所帮助。

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How do you append elements to a Python list?How do you append elements to a Python list?May 04, 2025 am 12:17 AM

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

How do you create a Python list? Give an example.How do you create a Python list? Give an example.May 04, 2025 am 12:16 AM

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

Discuss real-world use cases where efficient storage and processing of numerical data are critical.Discuss real-world use cases where efficient storage and processing of numerical data are critical.May 04, 2025 am 12:11 AM

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.

How do you create a Python array? Give an example.How do you create a Python array? Give an example.May 04, 2025 am 12:10 AM

Pythonarraysarecreatedusingthearraymodule,notbuilt-inlikelists.1)Importthearraymodule.2)Specifythetypecode,e.g.,'i'forintegers.3)Initializewithvalues.Arraysofferbettermemoryefficiencyforhomogeneousdatabutlessflexibilitythanlists.

What are some alternatives to using a shebang line to specify the Python interpreter?What are some alternatives to using a shebang line to specify the Python interpreter?May 04, 2025 am 12:07 AM

In addition to the shebang line, there are many ways to specify a Python interpreter: 1. Use python commands directly from the command line; 2. Use batch files or shell scripts; 3. Use build tools such as Make or CMake; 4. Use task runners such as Invoke. Each method has its advantages and disadvantages, and it is important to choose the method that suits the needs of the project.

How does the choice between lists and arrays impact the overall performance of a Python application dealing with large datasets?How does the choice between lists and arrays impact the overall performance of a Python application dealing with large datasets?May 03, 2025 am 12:11 AM

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Explain how memory is allocated for lists versus arrays in Python.Explain how memory is allocated for lists versus arrays in Python.May 03, 2025 am 12:10 AM

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

How do you specify the data type of elements in a Python array?How do you specify the data type of elements in a Python array?May 03, 2025 am 12:06 AM

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.