过年回家,都会约上亲朋好友聚聚会,会上经常会打麻将,斗地主,斗牛。在这些游戏中,斗牛是最受欢迎的,因为可以很多人一起玩,而且没有技术含量,都是看运气(专业术语是概率)。
斗牛的玩法是:
- 1、把牌中的JQK都拿出来
- 2、每个人发5张牌
- 3、如果5张牌中任意三张加在一起是10的 倍数,就是有牛。剩下两张牌的和的10的余数就是牛数。
牌的大小:
4条 > 3条 > 牛十 > 牛九 > …… > 牛一 >没有牛
而这些牌出现的概率是有多少呢?
由于只有四十张牌,所以采用了既简单,又有效率的方法枚举来计算。
计算的结果:
- 所有牌的组合数:658008
- 出现四条的组合数:360,概率 :0.05%
- 出现三条的组合数:25200,概率 :3.83%
- 出现牛十的组合数:42432,概率 :6.45%
- 出现牛九或牛八的组合数:87296,概率 :13.27%
- 出现牛一到牛七的组合数:306112,概率 :46.52%
- 出现没有牛的组合数:196608,概率 :29.88%
所以有七成的概率是有牛或以上的,所以如果你经常遇到没有牛,说明你的运气非常差或者本来是有牛的,但是你没有找出来。
Python源代码:
# encoding=utf-8 __author__ = 'kevinlu1010@qq.com' import os import cPickle from copy import copy from collections import Counter import itertools ''' 计算斗牛游戏的概率 ''' class Poker(): ''' 一张牌 ''' def __init__(self, num, type): self.num = num # 牌数 self.type = type # 花色 class GamePoker(): ''' 一手牌,即5张Poker ''' COMMON_NIU = 1 # 普通的牛,即牛一-牛七 NO_NIU = 0 # 没有牛 EIGHT_NINE_NIU = 2 # 牛九或牛八 TEN_NIU = 3 # 牛十 THREE_SAME = 4 # 三条 FOUR_SAME = 5 # 四条 def __init__(self, pokers): assert len(pokers) == 5 self.pokers = pokers self.num_pokers = [p.num for p in self.pokers] # self.weight = None # 牌的权重,权重大的牌胜 # self.money_weight = None # 如果该牌赢,赢钱的权重 self.result = self.sumary() def is_niu(self): ''' 是否有牛 :return: ''' # if self.is_three_same(): # return 0 for three in itertools.combinations(self.num_pokers, 3): if sum(three) % 10 == 0: left = copy(self.num_pokers) for item in three: left.remove(item) point = sum(left) % 10 return 10 if point == 0 else point return 0 def is_three_same(self): ''' 是否3条 :return: ''' # if self.is_four_same(): # return 0 count = Counter([p.num for p in self.pokers]) for num in count: if count[num] == 3: return num return 0 def is_four_same(self): ''' 是否4条 :return: ''' count = Counter([p.num for p in self.pokers]) for num in count: if count[num] == 4: return num return 0 def sumary(self): ''' 计算牌 ''' if self.is_four_same(): return GamePoker.FOUR_SAME if self.is_three_same(): return GamePoker.THREE_SAME niu_point = self.is_niu() if niu_point in (8, 9): return GamePoker.EIGHT_NINE_NIU elif niu_point == 10: return GamePoker.TEN_NIU elif niu_point > 0: return GamePoker.COMMON_NIU else: return GamePoker.NO_NIU def get_all_pokers(): ''' 生成所有的Poker,共四十个 :return: ''' pokers = [] for i in range(1, 11): for j in ('A', 'B', 'C', 'D'): pokers.append(Poker(i, j)) return pokers def get_all_game_poker(is_new=0): ''' 生成所有game_poker :param pokers: :return: ''' pokers = get_all_pokers() game_pokers = [] if not is_new and os.path.exists('game_pokers'): with open('game_pokers', 'r') as f: return cPickle.loads(f.read()) for pokers in itertools.combinations(pokers, 5): # 5代表五张牌 game_pokers.append(GamePoker(pokers)) with open('game_pokers', 'w') as f: f.write(cPickle.dumps(game_pokers)) return game_pokers def print_rate(game_pokers): total_num = float(len(game_pokers)) four_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.FOUR_SAME]) three_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.THREE_SAME]) ten_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.TEN_NIU]) eight_nine_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.EIGHT_NINE_NIU]) common_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.COMMON_NIU]) no_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.NO_NIU]) print '所有牌的组合数:%d' % total_num print '出现四条的组合数:%d,概率 :%.2f%%' % (four_num, four_num * 100 / total_num) print '出现三条的组合数:%d,概率 :%.2f%%' % (three_num, three_num * 100 / total_num) print '出现牛十的组合数:%d,概率 :%.2f%%' % (ten_num, ten_num * 100 / total_num) print '出现牛九或牛八的组合数:%d,概率 :%.2f%%' % (eight_nine_num, eight_nine_num * 100 / total_num) print '出现牛一到牛七的组合数:%d,概率 :%.2f%%' % (common_num, common_num * 100 / total_num) print '出现没有牛的组合数:%d,概率 :%.2f%%' % (no_num, no_num * 100 / total_num) def main(): game_pokers = get_all_game_poker() # 658008种 print_rate(game_pokers) main()
以上就是Python计算斗牛游戏的概率相关内容,希望对大家的学习有所帮助。

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.

Pythonarraysarecreatedusingthearraymodule,notbuilt-inlikelists.1)Importthearraymodule.2)Specifythetypecode,e.g.,'i'forintegers.3)Initializewithvalues.Arraysofferbettermemoryefficiencyforhomogeneousdatabutlessflexibilitythanlists.

In addition to the shebang line, there are many ways to specify a Python interpreter: 1. Use python commands directly from the command line; 2. Use batch files or shell scripts; 3. Use build tools such as Make or CMake; 4. Use task runners such as Invoke. Each method has its advantages and disadvantages, and it is important to choose the method that suits the needs of the project.

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

SublimeText3 Chinese version
Chinese version, very easy to use

Dreamweaver CS6
Visual web development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.
