生成随机密码这件事情用python来干确实相当的方便,优美的string方法加上choice简直是绝配
make_password.py
###简单几行代码执行即可生成记不住的字符串### $ python make_passwd.py DLrw9EiT Qs4Wm84q RQwl4L2L u9g0LgwW jHPtYdyU ...
$ python make_passwd.py DLrw9EiT Qs4Wm84q RQwl4L2L u9g0LgwW jHPtYdyU ...
代码如下——注释比代码长
#!/usr/bin/python #--coding:utf-8--# #------------------------------------------------------------------------------- # Name: make_passwd # # Author: LiuSha # # Created: 28/12/2014 # Copyright: (c) WDZJ-SA 2014 #------------------------------------------------------------------------------- from random import choice import string def Makepass(length=8, chars=string.letters+string.digits): return ''.join([choice(chars) for i in range(length)]) if __name__ == '__main__': for i in range(10): print Makepass() ##下例基本上就是这个小脚本的所有工作核心了,使用random模块的choice方法取string模块生成的字符串## >>> string.letters 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' >>> string.digits '0123456789' >>> choice(string.digits) '4' >>> choice(string.letters) 'T' ##有关生成器可参考:http://www.ipython.me/python/python-generator.html## #!/usr/bin/python #--coding:utf-8--# #------------------------------------------------------------------------------- # Name: make_passwd # # Author: LiuSha # # Created: 28/12/2014 # Copyright: (c) WDZJ-SA 2014 #------------------------------------------------------------------------------- from random import choice import string def Makepass(length=8, chars=string.letters+string.digits): return ''.join([choice(chars) for i in range(length)]) if __name__ == '__main__': for i in range(10): print Makepass() ##下例基本上就是这个小脚本的所有工作核心了,使用random模块的choice方法取string模块生成的字符串## >>> string.letters 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' >>> string.digits '0123456789' >>> choice(string.digits) '4' >>> choice(string.letters) 'T' ##有关生成器可参考:http://www.ipython.me/python/python-generator.html##
生成一些人似乎能好记一些的密码(Qs4Wm84q这种密码似乎除了复制粘贴没有别的选择,话说前年我使用shell生成的类似的密码给ldap做默认密码,我当时公司就真有员工把这样的密码背下来了,现在想想真心是厉害~~~)。
##这样看起来是比上面的好记一点了吧,但需要提供一个字典文件## $ python make_dictpass.py 1 8 1 ipythosd $ python make_dictpass.py nahontchen chenyibfeo ipythoniue coreostche ... $ python make_dictpass.py 1 8 1 ipythosd $ python make_dictpass.py nahontchen chenyibfeo ipythoniue coreostche ...
代码如下
#!/usr/bin/python #--coding:utf-8--# #------------------------------------------------------------------------------- # Name: make_dictpass # # Author: LiuSha # # Created: 28/12/2014 # Copyright: (c) WDZJ-SA 2014 #------------------------------------------------------------------------------- import random import string class passwd(): data = open('./word.txt').read().lower() def renew(self, n, maxmem=3): self.chars = [] for i in range(n): randspot = random.randrange(len(self.data)) self.data = self.data[randspot:] + self.data[:randspot] where = -1 locate = ''.join(self.chars[-maxmem:]) while where < 0 and locate: where = self.data.find(locate) locate = locate[1:] c = self.data[where+len(locate)+1] if not c.islower(): c = random.choice(string.lowercase) self.chars.append(c) def __str__(self): return ''.join(self.chars) if __name__ == '__main__': import sys ##如果带参数的话可以定义生成密码的次数,长度,追溯记录## if len(sys.argv) > 1: dopass = int(sys.argv[1]) else: dopass = 8 if len(sys.argv) > 2: length = int(sys.argv[2]) else: length = 10 if len(sys.argv) > 3: memory = int(sys.argv[3]) else: memory = 3 onepass = passwd() for i in range(dopass): onepass.renew(length,memory) print onepass
##字典文件(可以是各种单词的组合)## $ cat word.txt chenyi itchenyi python ipython coreos coreos.me ipython.me
#!/usr/bin/python #--coding:utf-8--# #------------------------------------------------------------------------------- # Name: make_dictpass # # Author: LiuSha # # Created: 28/12/2014 # Copyright: (c) WDZJ-SA 2014 #------------------------------------------------------------------------------- import random import string class passwd(): data = open('./word.txt').read().lower() def renew(self, n, maxmem=3): self.chars = [] for i in range(n): randspot = random.randrange(len(self.data)) self.data = self.data[randspot:] + self.data[:randspot] where = -1 locate = ''.join(self.chars[-maxmem:]) while where < 0 and locate: where = self.data.find(locate) locate = locate[1:] c = self.data[where+len(locate)+1] if not c.islower(): c = random.choice(string.lowercase) self.chars.append(c) def __str__(self): return ''.join(self.chars) if __name__ == '__main__': import sys ##如果带参数的话可以定义生成密码的次数,长度,追溯记录## if len(sys.argv) > 1: dopass = int(sys.argv[1]) else: dopass = 8 if len(sys.argv) > 2: length = int(sys.argv[2]) else: length = 10 if len(sys.argv) > 3: memory = int(sys.argv[3]) else: memory = 3 onepass = passwd() for i in range(dopass): onepass.renew(length,memory) print onepass
##字典文件(可以是各种单词的组合)## $ cat word.txt chenyi itchenyi python ipython coreos coreos.me ipython.me

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

WebStorm Mac version
Useful JavaScript development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.