search
HomeBackend DevelopmentPython Tutorial举例简单讲解Python中的数据存储模块shelve的用法

shelve类似于一个key-value数据库,可以很方便的用来保存Python的内存对象,其内部使用pickle来序列化数据,简单来说,使用者可以将一个列表、字典、或者用户自定义的类实例保存到shelve中,下次需要用的时候直接取出来,就是一个Python内存对象,不需要像传统数据库一样,先取出数据,然后用这些数据重新构造一遍所需要的对象。下面是简单示例:

import shelve


def test_shelve():
  # open 返回一个Shelf类的实例
  #
  # 参数flag的取值范围:
  # 'r':只读打开
  # 'w':读写访问
  # 'c':读写访问,如果不存在则创建
  # 'n':读写访问,总是创建新的、空的数据库文件
  #
  # protocol:与pickle库一致
  # writeback:为True时,当数据发生变化会回写,不过会导致内存开销比较大
  d = shelve.open('shelve.db', flag='c', protocol=2, writeback=False)
  assert isinstance(d, shelve.Shelf)

  # 在数据库中插入一条记录
  d['abc'] = {'name': ['a', 'b']}
  d.sync()

  print d['abc']

  # writeback是False,因此对value进行修改是不起作用的
  d['abc']['x'] = 'x'
  print d['abc'] # 还是打印 {'name': ['a', 'b']}

  # 当然,直接替换key的value还是起作用的
  d['abc'] = 'xxx'
  print d['abc']

  # 还原abc的内容,为下面的测试代码做准备
  d['abc'] = {'name': ['a', 'b']}
  d.close()

  # writeback 为 True 时,对字段内容的修改会writeback到数据库中。
  d = shelve.open('shelve.db', writeback=True)

  # 上面我们已经保存了abc的内容为{'name': ['a', 'b']},打印一下看看对不对
  print d['abc']

  # 修改abc的value的部分内容
  d['abc']['xx'] = 'xxx'
  print d['abc']
  d.close()

  # 重新打开数据库,看看abc的内容是否正确writeback
  d = shelve.open('shelve.db')
  print d['abc']
  d.close()

这个有一个潜在的小问题,如下:

>>> import shelve 
>>> s = shelve.open('test.dat') 
>>> s['x'] = ['a', 'b', 'c'] 
>>> s['x'].append('d') 
>>> s['x'] 
['a', 'b', 'c'] 

存储的d到哪里去了呢?其实很简单,d没有写回,你把['a', 'b', 'c']存到了x,当你再次读取s['x']的时候,s['x']只是一个拷贝,而你没有将拷贝写回,所以当你再次读取s['x']的时候,它又从源中读取了一个拷贝,所以,你新修改的内容并不会出现在拷贝中,解决的办法就是,第一个是利用一个缓存的变量,如下所示

>>> temp = s['x'] 
>>> temp.append('d') 
>>> s['x'] = temp 
>>> s['x'] 
['a', 'b', 'c', 'd'] 

在python2.4以后有了另外的方法,就是把open方法的writeback参数的值赋为True,这样的话,你open后所有的内容都将在cache中,当你close的时候,将全部一次性写到硬盘里面。如果数据量不是很大的时候,建议这么做。

下面是一个基于shelve的简单数据库的代码

#database.py 
import sys, shelve 
 
def store_person(db): 
  """ 
  Query user for data and store it in the shelf object 
  """ 
  pid = raw_input('Enter unique ID number: ') 
  person = {} 
  person['name'] = raw_input('Enter name: ') 
  person['age'] = raw_input('Enter age: ') 
  person['phone'] = raw_input('Enter phone number: ') 
  db[pid] = person 
 
def lookup_person(db): 
  """ 
  Query user for ID and desired field, and fetch the corresponding data from 
  the shelf object 
  """ 
  pid = raw_input('Enter ID number: ') 
  field = raw_input('What would you like to know? (name, age, phone) ') 
  field = field.strip().lower() 
  print field.capitalize() + ':', \ 
    db[pid][field] 
 
def print_help(): 
  print 'The available commons are: ' 
  print 'store :Stores information about a person' 
  print 'lookup :Looks up a person from ID number' 
  print 'quit  :Save changes and exit' 
  print '?   :Print this message' 
 
def enter_command(): 
  cmd = raw_input('Enter command (? for help): ') 
  cmd = cmd.strip().lower() 
  return cmd 
 
def main(): 
  database = shelve.open('database.dat') 
  try:  
    while True: 
      cmd = enter_command() 
      if cmd == 'store': 
        store_person(database) 
      elif cmd == 'lookup': 
        lookup_person(database) 
      elif cmd == '?': 
        print_help() 
      elif cmd == 'quit': 
        return  
  finally: 
    database.close() 
if __name__ == '__main__': main() 

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Understanding the Key DifferencesPython vs. C : Understanding the Key DifferencesApr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python vs. C  : Which Language to Choose for Your Project?Python vs. C : Which Language to Choose for Your Project?Apr 21, 2025 am 12:17 AM

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

Reaching Your Python Goals: The Power of 2 Hours DailyReaching Your Python Goals: The Power of 2 Hours DailyApr 20, 2025 am 12:21 AM

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Maximizing 2 Hours: Effective Python Learning StrategiesMaximizing 2 Hours: Effective Python Learning StrategiesApr 20, 2025 am 12:20 AM

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Choosing Between Python and C  : The Right Language for YouChoosing Between Python and C : The Right Language for YouApr 20, 2025 am 12:20 AM

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python vs. C  : A Comparative Analysis of Programming LanguagesPython vs. C : A Comparative Analysis of Programming LanguagesApr 20, 2025 am 12:14 AM

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

2 Hours a Day: The Potential of Python Learning2 Hours a Day: The Potential of Python LearningApr 20, 2025 am 12:14 AM

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools