search
HomeBackend DevelopmentPython TutorialPython常用知识点汇总

1、Set基本数据类型

a、set集合,是一个无序且不重复的元素集合

class set(object):
  """
  set() -> new empty set object
  set(iterable) -> new set object
   
  Build an unordered collection of unique elements.
  """
  def add(self, *args, **kwargs): # real signature unknown
    """
    Add an element to a set,添加元素
     
    This has no effect if the element is already present.
    """
    pass
 
  def clear(self, *args, **kwargs): # real signature unknown
    """ Remove all elements from this set. 清楚内容"""
    pass
 
  def copy(self, *args, **kwargs): # real signature unknown
    """ Return a shallow copy of a set. 浅拷贝 """
    pass
 
  def difference(self, *args, **kwargs): # real signature unknown
    """
    Return the difference of two or more sets as a new set. A中存在,B中不存在
     
    (i.e. all elements that are in this set but not the others.)
    """
    pass
 
  def difference_update(self, *args, **kwargs): # real signature unknown
    """ Remove all elements of another set from this set. 从当前集合中删除和B中相同的元素"""
    pass
 
  def discard(self, *args, **kwargs): # real signature unknown
    """
    Remove an element from a set if it is a member.
     
    If the element is not a member, do nothing. 移除指定元素,不存在不保错
    """
    pass
 
  def intersection(self, *args, **kwargs): # real signature unknown
    """
    Return the intersection of two sets as a new set. 交集
     
    (i.e. all elements that are in both sets.)
    """
    pass
 
  def intersection_update(self, *args, **kwargs): # real signature unknown
    """ Update a set with the intersection of itself and another. 取交集并更更新到A中 """
    pass
 
  def isdisjoint(self, *args, **kwargs): # real signature unknown
    """ Return True if two sets have a null intersection. 如果没有交集,返回True,否则返回False"""
    pass
 
  def issubset(self, *args, **kwargs): # real signature unknown
    """ Report whether another set contains this set. 是否是子序列"""
    pass
 
  def issuperset(self, *args, **kwargs): # real signature unknown
    """ Report whether this set contains another set. 是否是父序列"""
    pass
 
  def pop(self, *args, **kwargs): # real signature unknown
    """
    Remove and return an arbitrary set element.
    Raises KeyError if the set is empty. 移除元素
    """
    pass
 
  def remove(self, *args, **kwargs): # real signature unknown
    """
    Remove an element from a set; it must be a member.
     
    If the element is not a member, raise a KeyError. 移除指定元素,不存在保错
    """
    pass
 
  def symmetric_difference(self, *args, **kwargs): # real signature unknown
    """
    Return the symmetric difference of two sets as a new set. 对称交集
     
    (i.e. all elements that are in exactly one of the sets.)
    """
    pass
 
  def symmetric_difference_update(self, *args, **kwargs): # real signature unknown
    """ Update a set with the symmetric difference of itself and another. 对称交集,并更新到a中 """
    pass
 
  def union(self, *args, **kwargs): # real signature unknown
    """
    Return the union of sets as a new set. 并集
     
    (i.e. all elements that are in either set.)
    """
    pass
 
  def update(self, *args, **kwargs): # real signature unknown
    """ Update a set with the union of itself and others. 更新 """
    pass

b、数据类型模块举例

se = {11,22,33,44,55}
be = {44,55,66,77,88}
# se.add(66)
# print(se)  #添加元素,不能直接打印!
#
#
#
# se.clear()
# print(se)     #清除se集合里面所有的值,不能清除单个
#
#
#
# ce=be.difference(se)  #se中存在,be中不存在的值,必须赋值给一个新的变量
# print(ce)
#
#
# se.difference_update(be)
# print(se)         #在se中删除和be相同的值,不能赋值给一个新的变量,先输入转换,然后打印,也不能直接打印!
# se.discard(11)
# print(se)          #移除指定元素,移除不存在的时候,不会报错
# se.remove(11)
# print(se)       #移除指定的元素,移除不存在的会报错
# se.pop()
# print(se)        #移除随机的元素
#
#
# ret=se.pop()
# print(ret)       #移除元素,并且可以把移除的元素赋值给另一个变量
# ce = se.intersection(be)
# print(ce)    #取出两个集合的交集(相同的元素)
# se.intersection_update(be)
# print(se)    #取出两个集合的交集,并更新到se集合中
# ret = se.isdisjoint(be)
# print(ret)     #判断两个集合之间又没有交集,如果有交集返回False,没有返回True
# ret=se.issubset(be)
# print(ret)     #判断se是否是be集合的子序列,如果是返回True,不是返回Flase
# ret = se.issuperset(be)
# print(ret)     #判断se是不是be集合的父序列,如果是返回True,不是返回Flase
# ret=se.symmetric_difference(be)
# print(ret)     #对称交集,取出除了不相同的元素
# se.symmetric_difference_update(be)
# print(se)     #对称交集,取出不相同的元素并更新到se集合中
# ret = se.union(be)
# print(ret)     #并集,把两个元素集合并在一个新的变量中

2、深浅拷贝

a、数字和字符串

    对于 数字 和 字符串 而言,赋值、浅拷贝和深拷贝无意义,因为其永远指向同一个内存地址。

import copy
# ######### 数字、字符串 #########
n1 = 123
# n1 = "i am alex age 10"
print(id(n1))
# ## 赋值 ##
n2 = n1
print(id(n2))
# ## 浅拷贝 ##
n2 = copy.copy(n1)
print(id(n2))
  
# ## 深拷贝 ##
n3 = copy.deepcopy(n1)
print(id(n3))

 b、其他基本数据类型

对于字典、元祖、列表 而言,进行赋值、浅拷贝和深拷贝时,其内存地址的变化是不同的。

1、赋值

赋值,只是创建一个变量,该变量指向原来内存地址,如:

n1 = {"k1": "zhangyanlin", "k2": 123, "k3": ["Aylin", 456]}
n2 = n1

2、浅拷贝

浅拷贝,在内存中只额外创建第一层数据

import copy
n1 = {"k1": "zhangyanlin", "k2": 123, "k3": ["aylin", 456]}
n3 = copy.copy(n1)

3、深拷贝

深拷贝,在内存中将所有的数据重新创建一份(排除最后一层,即:python内部对字符串和数字的优化)

3、函数

函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可
面向对象:对函数进行分类和封装,让开发“更快更好更强...

.函数的定义主要有如下要点:

def:表示函数的关键字
函数名:函数的名称,日后根据函数名调用函数
函数体:函数中进行一系列的逻辑计算,如:发送邮件、计算出 [11,22,38,888,2]中的最大数等...
参数:为函数体提供数据
返回值:当函数执行完毕后,可以给调用者返回数据。

1、返回值

函数是一个功能块,该功能到底执行成功与否,需要通过返回值来告知调用者。

以上要点中,比较重要有参数和返回值:

def 发送短信():
    
  发送短信的代码...
  
  if 发送成功:
    return True
  else:
    return False
  
  
while True:
    
  # 每次执行发送短信函数,都会将返回值自动赋值给result
  # 之后,可以根据result来写日志,或重发等操作
  
  result = 发送短信()
  if result == False:
    短信发送失败...

函数的有三中不同的参数:

普通参数

# ######### 定义函数 #########
 
# name 叫做函数func的形式参数,简称:形参
def func(name):
    print name
 
# ######### 执行函数 #########
#  'zhangyanlin' 叫做函数func的实际参数,简称:实参
func('zhangyanlin')

默认参数

def func(name, age = 18):
    
    print "%s:%s" %(name,age)
 
# 指定参数
func('zhangyanlin', 19)
# 使用默认参数
func('nick')

注:默认参数需要放在参数列表最后
  

动态参数

def func(*args):
 
  print args

# 执行方式一
func(11,33,4,4454,5)
 
# 执行方式二
li = [11,2,2,3,3,4,54]
func(*li)
  

def func(**kwargs):
 
  print args
 
 
# 执行方式一
func(name='wupeiqi',age=18)
 
# 执行方式二
li = {'name':'wupeiqi', age:18, 'gender':'male'}
func(**li)
 def func(*args, **kwargs):
 
  print args
  print kwargs

邮件实例:

def email(p,j,k):
  import smtplib
  from email.mime.text import MIMEText
  from email.utils import formataddr
 
  set = True
  try:
    msg = MIMEText('j', 'plain', 'utf-8') #j 邮件内容
    msg['From'] = formataddr(["武沛齐",'wptawy@126.com'])
    msg['To'] = formataddr(["走人",'424662508@qq.com'])
    msg['Subject'] = "k" #k主题
 
    server = smtplib.SMTP("smtp.126.com", 25)
    server.login("wptawy@126.com", "WW.3945.59")
    server.sendmail('wptawy@126.com', [p], msg.as_string())
    server.quit()
  except:
    set = False
  return True

formmail = input("请你输入收件人邮箱:")
zhuti  = input("请您输入邮件主题:")
neirong = input("请您输入邮件内容:")
aa=email(formmail,neirong,zhuti)
if aa:
  print("邮件发送成功!")
else:
  print("邮件发送失败!")

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python vs. C  : Memory Management and ControlPython vs. C : Memory Management and ControlApr 19, 2025 am 12:17 AM

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python for Scientific Computing: A Detailed LookPython for Scientific Computing: A Detailed LookApr 19, 2025 am 12:15 AM

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Python and C  : Finding the Right ToolPython and C : Finding the Right ToolApr 19, 2025 am 12:04 AM

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python for Data Science and Machine LearningPython for Data Science and Machine LearningApr 19, 2025 am 12:02 AM

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool