不知道有没有人碰到过这样恶心的问题:两张表连接查询并limit,SQL效率很高,但是加上order by以后,语句的执行时间变的巨长,效率巨低。下边就来看看这个问题需要如何解决
情况是这么一个情况:现在有两张表,team表和people表,每个people属于一个team,people中有个字段team_id。
下面给出建表语句:
代码如下:
create table t_team
(
id int primary key,
tname varchar(100)
);
create table t_people
(
id int primary key,
pname varchar(100),
team_id int,
foreign key (team_id) references t_team(id)
);
下面我要连接两张表查询出前10个people,按tname排序。
于是,一个SQL语句诞生了:select * from t_people p left join t_team t onp.team_id=t.id order by p.pname limit 10; [语句①]
这个是我第一反应写的SQL,通俗易懂,也是大多数人的第一反应。
然后来测试一下这个语句的执行时间。
首先要准备数据。我用存储过程在t_team表中生成1000条数据,在t_people表中生成100000条数据。(存储过程在本文最后)
执行上面那条SQL语句,执行了好几次,耗时在3秒左右。
再换两个语句对比一下:
1.把order by子句去掉:select * from t_people p left join t_team t on p.team_id=t.id limit10; [语句②]
耗时0.00秒,忽略不计。
2.还是使用order by,但是把连接t_team表去掉:select * from t_people p order by p.pname limit 10; [语句③]
耗时0.15秒左右。
对比发现[语句①]的效率巨低。
为什么效率这么低呢。[语句②]和[语句③]执行都很快,[语句①]不过是二者的结合。如果先执行[语句③]得到排序好的10条people结果后,再连接查询出各个people的team,效率不会这么低。那么只有一个解释:MySQL先执行连接查询,再进行排序。
解决方法:如果想提高效率,就要修改SQL语句,让MySQL先排序取前10条再连接查询。
SQL语句:
select * from (select * from t_people p order by p.pname limit 10) p left join t_team t on p.team_id=t.id limit 10; [语句④]
[语句④]和[语句①]功能一样,虽然有子查询,虽然看起来很别扭,但是效率提高了很多,它的执行时间只要0.16秒左右,比之前的[语句①]提高了20倍。
这两个表的结构很简单,如果遇到复杂的表结构…我在实际开发中就碰到了这样的问题,使用[语句①]的方式耗时80多秒,但使用[语句④]只需1秒以内。
最后给出造数据的存储过程:
代码如下:
CREATE PROCEDURE createdata()
BEGIN
DECLARE i INT;
START TRANSACTION;
SET i=0;
WHILE i INSERT INTO t_team VALUES(i+1,CONCAT('team',i+1));
SET i=i+1;
END WHILE;
SET i=0;
WHILE i INSERT INTO t_people VALUES(i+1,CONCAT('people',i+1),i%1000+1);
SET i=i+1;
END WHILE;
COMMIT;
END
转载自:http://blog.csdn.net/xiao__gui/article/details/8616224

MySQLstringtypesimpactstorageandperformanceasfollows:1)CHARisfixed-length,alwaysusingthesamestoragespace,whichcanbefasterbutlessspace-efficient.2)VARCHARisvariable-length,morespace-efficientbutpotentiallyslower.3)TEXTisforlargetext,storedoutsiderows,

MySQLstringtypesincludeVARCHAR,TEXT,CHAR,ENUM,andSET.1)VARCHARisversatileforvariable-lengthstringsuptoaspecifiedlimit.2)TEXTisidealforlargetextstoragewithoutadefinedlength.3)CHARisfixed-length,suitableforconsistentdatalikecodes.4)ENUMenforcesdatainte

MySQLoffersvariousstringdatatypes:1)CHARforfixed-lengthstrings,2)VARCHARforvariable-lengthtext,3)BINARYandVARBINARYforbinarydata,4)BLOBandTEXTforlargedata,and5)ENUMandSETforcontrolledinput.Eachtypehasspecificusesandperformancecharacteristics,sochoose

TograntpermissionstonewMySQLusers,followthesesteps:1)AccessMySQLasauserwithsufficientprivileges,2)CreateanewuserwiththeCREATEUSERcommand,3)UsetheGRANTcommandtospecifypermissionslikeSELECT,INSERT,UPDATE,orALLPRIVILEGESonspecificdatabasesortables,and4)

ToaddusersinMySQLeffectivelyandsecurely,followthesesteps:1)UsetheCREATEUSERstatementtoaddanewuser,specifyingthehostandastrongpassword.2)GrantnecessaryprivilegesusingtheGRANTstatement,adheringtotheprincipleofleastprivilege.3)Implementsecuritymeasuresl

ToaddanewuserwithcomplexpermissionsinMySQL,followthesesteps:1)CreatetheuserwithCREATEUSER'newuser'@'localhost'IDENTIFIEDBY'password';.2)Grantreadaccesstoalltablesin'mydatabase'withGRANTSELECTONmydatabase.TO'newuser'@'localhost';.3)Grantwriteaccessto'

The string data types in MySQL include CHAR, VARCHAR, BINARY, VARBINARY, BLOB, and TEXT. The collations determine the comparison and sorting of strings. 1.CHAR is suitable for fixed-length strings, VARCHAR is suitable for variable-length strings. 2.BINARY and VARBINARY are used for binary data, and BLOB and TEXT are used for large object data. 3. Sorting rules such as utf8mb4_unicode_ci ignores upper and lower case and is suitable for user names; utf8mb4_bin is case sensitive and is suitable for fields that require precise comparison.

The best MySQLVARCHAR column length selection should be based on data analysis, consider future growth, evaluate performance impacts, and character set requirements. 1) Analyze the data to determine typical lengths; 2) Reserve future expansion space; 3) Pay attention to the impact of large lengths on performance; 4) Consider the impact of character sets on storage. Through these steps, the efficiency and scalability of the database can be optimized.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 English version
Recommended: Win version, supports code prompts!
