一、什么是执行计划 An explain plan is a representation of the access path that is taken when a query is executed within
一、什么是执行计划
An explain plan is a representation of the access path that is taken when a query is executed within Oracle.
二、如何访问数据
三、执行计划层次关系
1.一个简单的例子:
SQL> select /*+parallel (e 4)*/ * from emp e;
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1 Card=82 Bytes=7134)
1 PARALLEL_TO_SERIAL SELECT /*+ NO_EXPAND ROWID(A1) */ A1."EMPNO"
,A1."ENAME",A1."JOB",A1."MGR",A1."HI
2.层次的父子关系的例子:
PARENT1
**FIRST CHILD
****FIRST GRANDCHILD
**SECOND CHILD
Here the same principles apply, the FIRST GRANDCHILD is the initial operation then the FIRST CHILD followed by the SECOND CHILD and finally the PARENT collates the output.
四、例子解说
Execution Plan
----------------------------------------------------------
0 **SELECT STATEMENT Optimizer=CHOOSE (Cost=3 Card=8 Bytes=248)
1 0 **HASH JOIN (Cost=3 Card=8 Bytes=248)
2 1 ****TABLE ACCESS (FULL) OF 'DEPT' (Cost=1 Card=3 Bytes=36)
3 1 ****TABLE ACCESS (FULL) OF 'EMP' (Cost=1 Card=16 Bytes=304)
左侧的两排数据,前面的是序列号ID,后面的是对应的PID(父ID)。
A shortened summary of this is:
Execution starts with ID=0: SELECT STATEMENT but this is dependand on it's child objects
So it executes its first child step: ID=1 PID=0 HASH JOIN but this is dependand on it's child objects
So it executes its first child step: ID=2 PID=1 TABLE ACCESS (FULL) OF 'DEPT'
Then the second child step: ID=3 PID=2 TABLE ACCESS (FULL) OF 'EMP'
Rows are returned to the parent step(s) until finished
五、表访问方式
1.Full Table Scan (FTS) 全表扫描
即表示表曾经扩展的最后一个数据块),读取速度依赖于Oracle初始化参数db_block_multiblock_read_count(我觉得应该这样翻译:FTS扫描会使表使用上升到高水位(HWM),HWM标识了表最后写入数据的块,如果你用DELETE删除了所有的数据表仍然处于高水位(HWM),只有用TRUNCATE才能使表回归,FTS使用多IO从磁盘读取数据块).
Query Plan
------------------------------------
SELECT STATEMENT [CHOOSE] Cost=1
2.Index Lookup 索引扫描
There are 5 methods of index lookup:
index unique scan --索引唯一扫描
Method for looking up a single key value via a unique index. always returns a single value, You must supply AT LEAST the leading column of the index to access data via the index.
eg:SQL> explain plan for select empno,ename from emp where empno=10;
index range scan --索引局部扫描
Index range scan is a method for accessing a range values of a particular column. AT LEAST the leading column of the index must be supplied to access data via the index. Can be used for range operations (e.g. > >=
eg:SQL> explain plan for select mgr from emp where mgr = 5;
index full scan --索引全局扫描
Full index scans are only available in the CBO as otherwise we are unable to determine whether a full scan would be a good idea or not. We choose an index Full Scan when we have statistics that indicate that it is going to be more efficient than a Full table scan and a sort. For example we may do a Full index scan when we do an unbounded scan of an index and want the data to be ordered in the index order.
eg: SQL> explain plan for select empno,ename from big_emp order by empno,ename;
index fast full scan --索引快速全局扫描,不带order by情况下常发生
Scans all the block in the index, Rows are not returned in sorted order, Introduced in 7.3 and requires V733_PLANS_ENABLED=TRUE and CBO, may be hinted using INDEX_FFS hint, uses multiblock i/o, can be executed in parallel, can be used to access second column of concatenated indexes. This is because we are selecting all of the index.
eg: SQL> explain plan for select empno,ename from big_emp;
index skip scan --索引跳跃扫描,where条件列是非索引的前导列情况下常发生
Index skip scan finds rows even if the column is not the leading column of a concatenated index. It skips the first column(s) during the search.
eg:SQL> create index i_emp on emp(empno, ename);
SQL> select /*+ index_ss(emp i_emp)*/ job from emp where ename='SMITH';
3.Rowid 物理ID扫描
六、表连接方式
七、运算符
There are a number of different operations that promote sorts:
Has a number of different meanings, used to indicate partition elimination, may also indicate an actual filter step where one row source is filtering, another, functions such as min may introduce filter steps into query plans.
可能深入到视图基表)
When a view cannot be merged into the main query you will often see a projection view operation. This indicates that the 'view' will be selected from directly as opposed to being broken down into joins on the base tables. A number of constructs make a view non mergeable. Inline views are also non mergeable.
eg: SQL> explain plan for
select ename,tot from emp,(select empno,sum(empno) tot from big_emp group by empno) tmp
where emp.empno = tmp.empno;
Query Plan
------------------------
SELECT STATEMENT [CHOOSE]
**HASH JOIN
**TABLE ACCESS FULL EMP [ANALYZED]
**VIEW
****SORT GROUP BY
******INDEX FULL SCAN BE_IX
4.partition view --分区视图
Partition views are a legacy technology that were superceded by the partitioning option. This section of the article is provided as reference for such legacy systems.
示例:假定A、B、C都是不是小表,且在A表上一个组合索引:A(a.col1,a.col2) ,注意a.col1列为索引的引导列。考虑下面的查询:
from
Execution Plan
------------------------------------
参见另外个转载的文章)
--------------------------------------
如果没有执行计划,分析一下,上面的3个表应该拿哪一个作为第一个驱动表?从SQL语句看来,只有B表与C表上有限制条件,所以第一个驱动表应该为这2个表中的一个,,到底是哪一个呢?
上面的查询中C表上也有谓词(C.col3 = 5),有人可能认为C表作为第一个驱动表也能获得较好的性能。让我们再来分析一下:如果C表作为第一个驱动表,则能保证驱动表生成很小的row source,但是看看连接条件A.col2 = C.col2,此时就没有机会利用A表的索引,因为A表的col2列不为leading column,这样nested loop的效率很差,从而导致查询的效率很差。所以对于NL连接选择正确的驱动表很重要。
因此上面查询比较好的连接顺序为(B - - > A) - - > C。如果数据库是基于代价的优化器,它会利用计算出的代价来决定合适的驱动表与合适的连接顺序。一般来说,CBO都会选择正确的连接顺序,如果CBO选择了比较差的连接顺序,我们还可以使用ORACLE提供的hints来让CBO采用正确的连接顺序。如下所示
select /*+ ordered */ A.col4
andand
既然选择正确的驱动表这么重要,那么让我们来看一下执行计划,到底各个表之间是如何关联的,从而得到执行计划中哪个表应该为驱动表:
-------------------------------------
NESTED LOOPS
TABLE ACCESS (FULL) OF 'B'
TABLE ACCESS (BY INDEX ROWID) OF 'A'
INDEX (RANGE SCAN) OF 'INX_COL12A' (NON-UNIQUE)
TABLE ACCESS (FULL) OF 'C'
看执行计划的第3列,即字母部分,每列值的左面有空格作为缩进字符。在该列值左边的空格越多,说明该列值的缩进越多,该列值也越靠右。如上面的执行计划所示:第一列值为6的行的缩进最多,即该行最靠右;第一列值为4、5的行的缩进一样,其靠右的程度也一样,但是第一列值为4的行比第一列值为5的行靠上;谈论上下关系时,只对连续的、缩进一致的行有效。
表先与A表做嵌套循环,然后将生成的row source与C表做排序—合并连接。
看执行计划时,我们的关键不是看哪个操作先执行,哪个操作后执行,而是关键看表之间连接的顺序(如得知哪个为驱动表,这需要从操作的顺序进行判断)、使用了何种类型的关联及具体的存取路径(如判断是否利用了索引)
在从执行计划中判断出哪个表为驱动表后,根据我们的知识判断该表作为驱动表(就像上面判断ABC表那样)是否合适,如果不合适,对SQL语句进行更改,使优化器可以选择正确的驱动表。

MySQL is suitable for beginners to learn database skills. 1. Install MySQL server and client tools. 2. Understand basic SQL queries, such as SELECT. 3. Master data operations: create tables, insert, update, and delete data. 4. Learn advanced skills: subquery and window functions. 5. Debugging and optimization: Check syntax, use indexes, avoid SELECT*, and use LIMIT.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.

MySQL is an open source relational database management system that is widely used in Web development. Its key features include: 1. Supports multiple storage engines, such as InnoDB and MyISAM, suitable for different scenarios; 2. Provides master-slave replication functions to facilitate load balancing and data backup; 3. Improve query efficiency through query optimization and index use.

SQL is used to interact with MySQL database to realize data addition, deletion, modification, inspection and database design. 1) SQL performs data operations through SELECT, INSERT, UPDATE, DELETE statements; 2) Use CREATE, ALTER, DROP statements for database design and management; 3) Complex queries and data analysis are implemented through SQL to improve business decision-making efficiency.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA

The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

The steps to build a MySQL database include: 1. Create a database and table, 2. Insert data, and 3. Conduct queries. First, use the CREATEDATABASE and CREATETABLE statements to create the database and table, then use the INSERTINTO statement to insert the data, and finally use the SELECT statement to query the data.

MySQL is suitable for beginners because it is easy to use and powerful. 1.MySQL is a relational database, and uses SQL for CRUD operations. 2. It is simple to install and requires the root user password to be configured. 3. Use INSERT, UPDATE, DELETE, and SELECT to perform data operations. 4. ORDERBY, WHERE and JOIN can be used for complex queries. 5. Debugging requires checking the syntax and use EXPLAIN to analyze the query. 6. Optimization suggestions include using indexes, choosing the right data type and good programming habits.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Notepad++7.3.1
Easy-to-use and free code editor

WebStorm Mac version
Useful JavaScript development tools

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)