search
HomeDatabaseMysql TutorialOracle X$ tables – Part 1 – Where do they get their data f

Oracle X$ tables – Part 1 – Where do they get their data from? by Tanel Poder Posted on January 10, 2014 It’s long-time public knowledge that X$ fixed tables in Oracle are just “windows” into Oracle’s memory. So whenever you query an

Oracle X$ tables – Part 1 – Where do they get their data from?

by Tanel Poder Posted on January 10, 2014

It’s long-time public knowledge that X$ fixed tables in Oracle are just “windows” into Oracle’s memory. So whenever you query an X$ table, the FIXED TABLE rowsource function in your SQL execution plan will just read some memory structure, parse its output and show you the results in tabular form. This is correct, but not the whole truth.

Check this example. Let’s query the X$KSUSE table, which is used by V$SESSION:

SQL> SELECT addr, indx, ksuudnam FROM x$ksuse WHERE rownum <strong>391513C4</strong>          1 SYS
3914E710          2 SYS
3914BA5C          3 SYS
39148DA8          4 SYS
391460F4          5 SYS

Now let’s check in which Oracle memory region this memory address resides (SGA, PGA, UGA etc). I’m using my script fcha for this (Find CHunk Address). You should probably not run this script in busy production systems as it uses the potentially dangerous X$KSMSP fixed table:

SQL> @fcha <strong>391513C4</strong>
Find in which heap (UGA, PGA or Shared Pool) the memory address 391513C4 resides...

WARNING!!! This script will query X$KSMSP, which will cause heavy shared pool latch contention
in systems under load and with large shared pool. This may even completely hang
your instance until the query has finished! You probably do not want to run this in production!

Press ENTER to continue, CTRL+C to cancel...

LOC KSMCHPTR   KSMCHIDX   KSMCHDUR KSMCHCOM           KSMCHSIZ KSMCHCLS   KSMCHTYP KSMCHPAR
--- -------- ---------- ---------- ---------------- ---------- -------- ---------- --------
<span><strong>SGA</strong></span> 39034000          1          1 permanent memor     3977316 perm              0 00

SQL>

Ok, these X$KSUSE (V$SESSION) records reside in a permanent allocation in SGA and my X$ query apparently just parsed & presented the information from there.

Now, let’s query something else, for example the “Soviet Union” view X$KCCCP:

SQL> SELECT addr, indx, inst_id, cptno FROM x$kcccp WHERE rownum <strong>F692347C</strong>          0          1          1
F692347C          1          1          2
F692347C          2          1          3
F692347C          3          1          4
F692347C          4          1          5

Ok, let’s see where do these records reside:

SQL> @fcha <strong>F692347C</strong>
Find in which heap (UGA, PGA or Shared Pool) the memory address F692347C resides...

WARNING!!! This script will query X$KSMSP, which will cause heavy shared pool latch contention
in systems under load and with large shared pool. This may even completely hang
your instance until the query has finished! You probably do not want to run this in production!

Press ENTER to continue, CTRL+C to cancel...

LOC KSMCHPTR   KSMCHIDX   KSMCHDUR KSMCHCOM           KSMCHSIZ KSMCHCLS   KSMCHTYP KSMCHPAR
--- -------- ---------- ---------- ---------------- ---------- -------- ---------- --------
<span><strong>UGA</strong></span> F6922EE8                       <strong>kxsFrame4kPage</strong>         4124 freeabl           0 00

SQL>

Wow, why does the X$KCCCP data reside in my session’s UGA? This is where the extra complication (and sophistication) of X$ fixed tables comes into play!

Some X$ tables do not simply read whatever is in some memory location, but they have helper functions associated with them (something like fixed packages that the ASM instance uses internally). So, whenever you query this X$, then first a helper function is called, which will retrieve the source data from whereever it needs to, then copies it to your UGA in the format corresponding to this X$ and then the normal X$ memory location parsing & presentation code kicks in.

If you trace what the X$KCCCP access does – you’d see a bunch of control file parallel read wait events every time you query the X$ table (to retrieve the checkpoint progress records). So this X$ is not doing just a passive read only presentation of some memory structure (array). The helper function will first do some real work, allocates some runtime memory for the session (the kxsFrame4kPage chunk in UGA) and copies the results of its work to this UGA area – so that the X$ array & offset parsing code can read and present it back to the query engine.

In other words, the ADDR column in X$ tables does not necessarily show where the source data it shows ultimately lives, but just where the final array that got parsed for presentation happened to be. Sometimes the parsed data structure is the ultimate source where it comes from, sometimes a helper function needs to do a bunch of work (like taking latches and walking linked lists for X$KSMSP or even doing physical disk reads from controlfiles for X$KCCCP access).

And more, let’s run the same query against X$KCCCP twice:

SQL> SELECT addr, indx, inst_id, cptno FROM x$kcccp WHERE rownum <strong>F69254B4</strong>          0          1          1
F69254B4          1          1          2
F69254B4          2          1          3
F69254B4          3          1          4
F69254B4          4          1          5

And once more:

SQL> SELECT addr, indx, inst_id, cptno FROM x$kcccp WHERE rownum <strong>F692B508</strong>          0          1          1
F692B508          1          1          2
F692B508          2          1          3
F692B508          3          1          4
F692B508          4          1          5

See how the ADDR column has changed between executions even though we are querying the same data! This is not because the controlfiles or the source data have somehow relocated. It’s just that the temporary cursor execution scratch area, where the final data structure was put for presentation (kxsFrame4kPage chunk in UGA), just happened to be allocated from different locations for the two different executions.

There may be exceptions, but as long as the ADDR resides in SGA, I’d say it’s the actual location of where the data lives – but when it’s in UGA/PGA, it may be just the temporary cursor scratch area and the source data was taken from somewhere else (especially when the ADDR constantly changes or alternates between 2-3 different variants when repeatedly running your X$ query). Note that there are X$ tables which intentionally read data from arrays in your UGA (the actual source data lives in the UGA or PGA itself), but more about that in the future.

  • Where is LOB data stored?
  • Profiling trace files with preprocessor external tables in 11g and some parallel execution hacking
  • Oracle In-Memory Column Store Internals – Part 1 – Which SIMD extensions are getting…
  • Oracle Exadata Performance series – Part 1: Should I use Hugepages on Linux Database Nodes?
  • When do Oracle Parallel Execution Slaves issue buffered physical reads – Part 2?
Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
MySQL: Essential Skills for Beginners to MasterMySQL: Essential Skills for Beginners to MasterApr 18, 2025 am 12:24 AM

MySQL is suitable for beginners to learn database skills. 1. Install MySQL server and client tools. 2. Understand basic SQL queries, such as SELECT. 3. Master data operations: create tables, insert, update, and delete data. 4. Learn advanced skills: subquery and window functions. 5. Debugging and optimization: Check syntax, use indexes, avoid SELECT*, and use LIMIT.

MySQL: Structured Data and Relational DatabasesMySQL: Structured Data and Relational DatabasesApr 18, 2025 am 12:22 AM

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.

MySQL: Key Features and Capabilities ExplainedMySQL: Key Features and Capabilities ExplainedApr 18, 2025 am 12:17 AM

MySQL is an open source relational database management system that is widely used in Web development. Its key features include: 1. Supports multiple storage engines, such as InnoDB and MyISAM, suitable for different scenarios; 2. Provides master-slave replication functions to facilitate load balancing and data backup; 3. Improve query efficiency through query optimization and index use.

The Purpose of SQL: Interacting with MySQL DatabasesThe Purpose of SQL: Interacting with MySQL DatabasesApr 18, 2025 am 12:12 AM

SQL is used to interact with MySQL database to realize data addition, deletion, modification, inspection and database design. 1) SQL performs data operations through SELECT, INSERT, UPDATE, DELETE statements; 2) Use CREATE, ALTER, DROP statements for database design and management; 3) Complex queries and data analysis are implemented through SQL to improve business decision-making efficiency.

MySQL for Beginners: Getting Started with Database ManagementMySQL for Beginners: Getting Started with Database ManagementApr 18, 2025 am 12:10 AM

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA

MySQL's Role: Databases in Web ApplicationsMySQL's Role: Databases in Web ApplicationsApr 17, 2025 am 12:23 AM

The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

MySQL: Building Your First DatabaseMySQL: Building Your First DatabaseApr 17, 2025 am 12:22 AM

The steps to build a MySQL database include: 1. Create a database and table, 2. Insert data, and 3. Conduct queries. First, use the CREATEDATABASE and CREATETABLE statements to create the database and table, then use the INSERTINTO statement to insert the data, and finally use the SELECT statement to query the data.

MySQL: A Beginner-Friendly Approach to Data StorageMySQL: A Beginner-Friendly Approach to Data StorageApr 17, 2025 am 12:21 AM

MySQL is suitable for beginners because it is easy to use and powerful. 1.MySQL is a relational database, and uses SQL for CRUD operations. 2. It is simple to install and requires the root user password to be configured. 3. Use INSERT, UPDATE, DELETE, and SELECT to perform data operations. 4. ORDERBY, WHERE and JOIN can be used for complex queries. 5. Debugging requires checking the syntax and use EXPLAIN to analyze the query. 6. Optimization suggestions include using indexes, choosing the right data type and good programming habits.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Have Crossplay?
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor