Oracle memory troubleshooting, Part 1: Heapdump Analyzer
Oracle memory troubleshooting, Part 1: Heapdump Analyzer by Tanel Poder Posted on January 2, 2009 When troubleshooting Oracle process memory issues like ORA-4030’s or just excessive memory usage, you may want to get a detailed breakdown o
Oracle memory troubleshooting, Part 1: Heapdump Analyzer
by Tanel Poder Posted on January 2, 2009
When troubleshooting Oracle process memory issues like ORA-4030’s or just excessive memory usage, you may want to get a detailed breakdown of PGA, UGA and Call heaps to see which component in there is the largest one.
The same goes for shared pool memory issues and ORA-4031’s – sometimes you need to dump the shared pool heap metadata for understanding what kind of allocations take most of space in there.
The heap dumping can be done using a HEAPDUMP event, see http://www.juliandyke.com/Diagnostics/Dumps/Dumps.html for syntax.
NB! Note that when dumping SGA heaps (like shared, large, java and streams pools), your process holds shared pool latches for the entire dump duration so this should be used only as a last resort in busy production instances. Dumping a big shared pool could hang your instance for quite some time. Dumping private process heaps is safer as that way only the target process is affected.
The heapdump output file structure is actually very simple, all you need to look at is the HEAP DUMP header to see in which heap the following chunks of memory belong (as there may be multiple heaps dumped into a single tracefile).
HEAP DUMP heap name="<strong>sga heap(1,1)</strong>" desc=04EA22D0 extent sz=0xfc4 alt=108 het=32767 rec=9 flg=-125 opc=0 parent=00000000 owner=00000000 nex=00000000 xsz=0x400000 EXTENT 0 addr=20800000 <strong>Chunk 20800038 sz= 374904 free " "</strong> Chunk 2085b8b0 sz= 540 recreate "KGL handles " latch=00000000 Chunk 2085bacc sz= 540 recreate "KGL handles " latch=00000000 Chunk 2085bce8 sz= 1036 freeable "parameter table" Chunk 2085c0f4 sz= 1036 freeable "parameter table" Chunk 2085c500 sz= 1036 freeable "parameter table" Chunk 2085c90c sz= 1036 freeable "parameter table" Chunk 2085cd18 sz= 1036 freeable "parameter table" Chunk 2085d124 sz= 228 recreate "KGL handles " latch=00000000 Chunk 2085d208 sz= 228 recreate "KGL handles " latch=00000000 Chunk 2085d2ec sz= 228 recreate "KGL handles " latch=00000000 Chunk 2085d3d0 sz= 228 recreate "KGL handles " latch=00000000 Chunk 2085d4b4 sz= 228 recreate "KGL handles " latch=00000000 Chunk 2085d598 sz= 540 recreate "KQR PO " latch=2734AA00 Chunk 2085d7b4 sz= 540 recreate "KQR PO " latch=2734AA00 Chunk 2085d9d0 sz= 228 recreate "KGL handles " latch=00000000 ...
The first list of chunks after HEAP DUMP (the list above) is the list of all chunks in the heap. There are more lists such as freelists and LRU lists in a regular heap, but lets ignore those for now, I’ll write more about heaps in an upcoming post.
After identifying heap name from HEAP DUMP line, you can see all individual chunks from the “Chunk” lines. The second column after Chunk shows the start address of a chunk, sz= means chunk size, the next column shows the type of a chunk (free, freeable, recreate, perm, R-free, R-freeable).
The next column is important one for troublehsooting, it shows the reason why a chunk was allocated (such KGL handles for library cache handles, KGR PO for dictionary cache parent objects etc). Every chunk in a heap has a fixed 16 byte area in the chunk header which stores the allocation reason (comment) of a chunk. Whenever a client layer (calling a kghal* chunk allocation function) allocates heap memory, it needs to pass in a comment up to 16 bytes and it’s stored in the newly allocated chunk header.
This is a trivial technique for troubleshooting memory leaks and other memory allocation problems. When having memory issues you can just dump all the heap’s chunks sizes and aggregate these by allocation reason/comment. That would show you the biggest heap occupier and give further hints where to look next.
As there can be lots of chunks in large heaps, aggregating the data manually would be time consuming (and boring). Here’s a little shell script which can summarize Oracle heapdump output tracefile contents for you:
http://blog.tanelpoder.com/files/scripts/tools/unix/heapdump_analyzer
After taking a heapdump, you just run to get a heap summary, total allocation sizes grouped by parent heap, chunk comment and chunk size.
heapdump_analyzer <em>tracefile.trc</em>
Here’s an example of a shared pool dump analysis (heapdump at level 2):
SQL> alter session set events 'immediate trace name heapdump level 2'; Session altered. SQL> exit ... $ <strong>heapdump_analyzer</strong> lin10g_ora_7145.trc -- Heapdump Analyzer v1.00 by Tanel Poder ( http://www.tanelpoder.com ) Total_size #Chunks Chunk_size, From_heap, Chunk_type, Alloc_reason ---------- ------- ------------ ----------------- ----------------- ----------------- <strong>11943936 3 3981312 , sga heap(1,3), free, </strong> 3981244 1 3981244 , sga heap(1,0), perm, perm 3980656 1 3980656 , sga heap(1,0), perm, perm 3980116 1 3980116 , sga heap(1,0), perm, perm 3978136 1 3978136 , sga heap(1,0), perm, perm 3977156 1 3977156 , sga heap(1,1), recreate, KSFD SGA I/O b 3800712 1 3800712 , sga heap(1,0), perm, perm 3680560 1 3680560 , sga heap(1,0), perm, perm 3518780 1 3518780 , sga heap(1,0), perm, perm 3409016 1 3409016 , sga heap(1,0), perm, perm 3394124 1 3394124 , sga heap(1,0), perm, perm 2475420 1 2475420 , sga heap(1,1), free, 2319892 1 2319892 , sga heap(1,3), free, 2084864 509 4096 , sga heap(1,3), freeable, sql area ...
It shows that the biggest component in shared pool is 11943936 bytes, it consists of 3 free chunks, which reside in shared pool subpool 1 and sub-sub-pool 3 (see the sga heap(1,3) div).
Note that my script is very trivial as of now, it reports different sized chunks on different lines so you still may need to do some manual aggregation if there’s no obvious troublemaker seen in the top of the list.
Here’s an example of a summarized heapdump level 29 ( PGA + UGA + call heaps ):
$ heapdump_analyzer lin10g_ora_7145_0002.trc -- Heapdump Analyzer v1.00 by Tanel Poder ( http://www.tanelpoder.com ) Total_size #Chunks Chunk_size, From_heap, Chunk_type, Alloc_reason ---------- ------- ------------ ----------------- ----------------- ----------------- 7595216 116 65476 , top uga heap, freeable, session heap 6779640 105 64568 , session heap, freeable, kxs-heap-w 2035808 8 254476 , callheap, freeable, kllcqas:kllsltb 1017984 4 254496 , top call heap, freeable, callheap 987712 8 123464 , top uga heap, freeable, session heap 987552 8 123444 , session heap, freeable, kxs-heap-w 196260 3 65420 , session heap, freeable, kxs-heap-w 159000 5 31800 , session heap, freeable, kxs-heap-w 112320 52 2160 , callheap, free, 93240 105 888 , session heap, free, 82200 5 16440 , session heap, freeable, kxs-heap-w 65476 1 65476 , top uga heap, recreate, session heap 65244 1 65244 , top call heap, free, 56680 26 2180 , top call heap, freeable, callheap 55936 1 55936 , session heap, freeable, kxs-heap-w ...
You can also use -t option to show total heap sizes in the output (this total is not computed by my script, I just take the “Total” lines from the heapdump tracefile):
$ <strong>heapdump_analyzer -t</strong> lin10g_ora_7145_0002.trc | grep Total Total_size #Chunks Chunk_size, From_heap, Chunk_type, Alloc_reason 8714788 1 8714788 , top uga heap, TOTAL, Total heap size 8653464 1 8653464 , session heap, TOTAL, Total heap size 2169328 2 1084664 , callheap, TOTAL, Total heap size 1179576 1 1179576 , top call heap, TOTAL, Total heap size 191892 1 191892 , pga heap, TOTAL, Total heap size
References:
- Metalink note 396940.1 – Troubleshooting and Diagnosing ORA-4031 Error
- Heapdump syntax – http://www.juliandyke.com/Diagnostics/Dumps/Dumps.html
- Heapdump analyzer – http://blog.tanelpoder.com/files/scripts/tools/unix/heapdump_analyzer
Related Posts
- Oracle Memory Troubleshooting, Part 4: Drilling down into PGA memory usage with…
- Oracle In-Memory Column Store Internals – Part 1 – Which SIMD extensions are getting…
- Advanced Oracle Troubleshooting Guide – Part 10: Index unique scan doing multiblock reads?!
- Advanced Oracle Troubleshooting Guide – Part 11: Complex Wait Chain Signature Analysis with…
- Our take on the Oracle Database 12c In-Memory Option

MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

MySQL is suitable for small and large enterprises. 1) Small businesses can use MySQL for basic data management, such as storing customer information. 2) Large enterprises can use MySQL to process massive data and complex business logic to optimize query performance and transaction processing.

InnoDB effectively prevents phantom reading through Next-KeyLocking mechanism. 1) Next-KeyLocking combines row lock and gap lock to lock records and their gaps to prevent new records from being inserted. 2) In practical applications, by optimizing query and adjusting isolation levels, lock competition can be reduced and concurrency performance can be improved.

MySQL is not a programming language, but its query language SQL has the characteristics of a programming language: 1. SQL supports conditional judgment, loops and variable operations; 2. Through stored procedures, triggers and functions, users can perform complex logical operations in the database.

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

MySQL is an open source relational database management system suitable for data storage, management, query and security. 1. It supports a variety of operating systems and is widely used in Web applications and other fields. 2. Through the client-server architecture and different storage engines, MySQL processes data efficiently. 3. Basic usage includes creating databases and tables, inserting, querying and updating data. 4. Advanced usage involves complex queries and stored procedures. 5. Common errors can be debugged through the EXPLAIN statement. 6. Performance optimization includes the rational use of indexes and optimized query statements.

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.

InnoDB's lock mechanisms include shared locks, exclusive locks, intention locks, record locks, gap locks and next key locks. 1. Shared lock allows transactions to read data without preventing other transactions from reading. 2. Exclusive lock prevents other transactions from reading and modifying data. 3. Intention lock optimizes lock efficiency. 4. Record lock lock index record. 5. Gap lock locks index recording gap. 6. The next key lock is a combination of record lock and gap lock to ensure data consistency.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 Chinese version
Chinese version, very easy to use