search
HomeDatabaseMysql TutorialSQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好? 今天遇到某人在我以前写的一篇文章里问到 如果统计信息没来得及更新的话,那岂不是统计出来的数据时错误的了 这篇文章的地址: SQLSERVER是怎麽通过索引和统计信息来找到目标数据的(第三篇) 之前

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

今天遇到某人在我以前写的一篇文章里问到

如果统计信息没来得及更新的话,那岂不是统计出来的数据时错误的了

这篇文章的地址:SQLSERVER是怎麽通过索引和统计信息来找到目标数据的(第三篇)

之前我以为SELECT COUNT(*)是根据统计信息来的,但是后来想了一下,这个肯定不是

那么SQLSERVER怎麽统计SELECT COUNT(*)的呢??

其实SQLSERVER也是使用扫描的方法

大家也可以先看一下:SQLSERVER中的ALLOCATION SCAN和RANGE SCAN

但是这里不讨论是ALLOCATION SCAN还是RANGE SCAN,大家知道SQLSERVER使用的是扫描的方式就可以了


聚集索引表

SQL脚本如下:

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

<span> 1</span> <span>USE</span> <span>[</span><span>pratice</span><span>]</span>
<span> 2</span> <span>GO</span>
<span> 3</span> 
<span> 4</span> <span>--</span><span>建立聚集索引表</span>
<span> 5</span> <span>CREATE</span> <span>TABLE</span> ct1(c1 <span>INT</span>, c2 <span>VARCHAR</span> (<span>2000</span><span>));
</span><span> 6</span> <span>GO</span>
<span> 7</span> <span>--</span><span>建立聚集索引</span>
<span> 8</span> <span>CREATE</span> <span>CLUSTERED</span> <span>INDEX</span> t1c1 <span>ON</span><span> ct1(c1);
</span><span> 9</span> <span>GO</span>
<span>10</span>  
<span>11</span> <span>--</span><span>插入测试数据</span>
<span>12</span> <span>DECLARE</span> <span>@a</span> <span>INT</span><span>;
</span><span>13</span> <span>SELECT</span> <span>@a</span> <span>=</span> <span>1</span><span>;
</span><span>14</span> <span>WHILE</span> (<span>@a</span> <span> <span>12</span><span>)
</span><span>15</span> <span>BEGIN</span>
<span>16</span>     <span>INSERT</span> <span>INTO</span> ct1 <span>VALUES</span> (<span>@a</span>, <span>replicate</span>(<span>'</span><span>a</span><span>'</span>, <span>2000</span><span>))
</span><span>17</span>     <span>SELECT</span> <span>@a</span> <span>=</span> <span>@a</span> <span>+</span> <span>1</span>
<span>18</span> <span>END</span>
<span>19</span> <span>GO</span>
<span>20</span> 
<span>21</span> 
<span>22</span> 
<span>23</span> 
<span>24</span> <span>--</span><span>查询数据</span>
<span>25</span> <span>SELECT</span> <span>*</span> <span>FROM</span> ct1 </span>
View Code

看一下执行计划

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片一)

<span>1</span> <span>SET</span> <span>STATISTICS</span> PROFILE <span>ON</span>
<span>2</span> <span>GO</span>
<span>3</span> <span>SELECT</span> <span>COUNT</span>(<span>*</span>) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>ct1</span><span>]</span>

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

 SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片二) 

这里需要了解流聚合运算符

 MSDN对于流聚合运算符的解释

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片三)

 

宋沄剑的文章里也有对流聚合运算符的解释

SQL Server中的执行引擎入门

 

重点是理解:Stream Aggregate 运算符按一列或多列对行分组,然后计算由查询返回的一个或多个聚合表达式

Stream Aggregate 运算符按一列对行分组,然后计算由查询返回的一个聚合表达式

我们用下面两个图会清楚一些

 SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片四)

 SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片五)

SQLSERVER对表中的行分组进行扫描,但是SQLSERVER以多少行为一组来进行扫描呢??这个不得而知了

为什麽要使用流聚合?

大家一定会自然而然地想到分组统计提高性能,特别是表中数据量非常大的时候,分组统计特别有用

 

计算标量运算符只是把聚合的结果隐式转换为int类型

 

大家知道ct1表只有两列,但是SELECT COUNT(3) FROM [dbo].[ct1]也能够返回表中的行数

<span>1</span> <span>SELECT</span> <span>COUNT</span>(<span>1</span>) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>ct1</span><span>]</span>

<span>1</span> <span>SELECT</span> <span>COUNT</span>(<span>3</span>) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>ct1</span><span>]</span>

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片六)

 就算用列名都是一样的执行计划

<span>1</span> <span>SELECT</span> <span>COUNT</span>(c1) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>ct1</span><span>]</span>
<span>2</span> <span>SELECT</span> <span>COUNT</span>(c2) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>ct1</span><span>]</span>

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片七)

 

SQLSERVER究竟以哪一列来进行表的行数统计的呢??????

答案就在

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

Stream Aggregate 运算符要求输入的数据要按某列进行排序,如果由于前面的 Sort 运算符或已排序的索引查找或扫描导致数据尚未排序,

则优化器将在此运算符前面使用一个 Sort 运算符,使表的某列是有序排序的。

<span>1</span> <span>SELECT</span>  <span>COUNT</span>(<span>*</span><span>)
</span><span>2</span> <span>SELECT</span>  <span>count</span>(<span>3</span><span>)
</span><span>3</span> <span>SELECT</span>  <span>count</span>(c2)

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片八)

上面三个SQL语句都是按照聚集索引的第一个字段(ct1表中的c1列)来进行统计的

因为聚集索引的第一个字段是根据建立聚集索引的时候的排序顺序预先排好序

Stream Aggregate 运算符要求输入的数据要按某列进行排序

所以无论是指定字段名、*还是数字,都是根据聚集索引的第一个字段来统计


堆表

SQL脚本如下:

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

<span> 1</span> <span>CREATE</span> <span>TABLE</span> t1(c1 <span>INT</span>, c2 <span>VARCHAR</span> (<span>8000</span><span>));
</span><span> 2</span> <span>GO</span>
<span> 3</span> 
<span> 4</span> 
<span> 5</span> <span>--</span><span>插入测试数据</span>
<span> 6</span> 
<span> 7</span> 
<span> 8</span> 
<span> 9</span> <span>DECLARE</span> <span>@a</span> <span>INT</span><span>;
</span><span>10</span> <span>SELECT</span> <span>@a</span> <span>=</span> <span>1</span><span>;
</span><span>11</span> <span>WHILE</span> (<span>@a</span> <span> <span>12</span><span>)
</span><span>12</span> <span>BEGIN</span>
<span>13</span>     <span>INSERT</span> <span>INTO</span> t1 <span>VALUES</span> (<span>@a</span>, <span>replicate</span>(<span>'</span><span>a</span><span>'</span>, <span>5000</span><span>))
</span><span>14</span>     <span>SELECT</span> <span>@a</span> <span>=</span> <span>@a</span> <span>+</span> <span>1</span>
<span>15</span> <span>END</span>
<span>16</span> <span>GO</span>
<span>17</span>  
<span>18</span> 
<span>19</span> 
<span>20</span> <span>--</span><span>查询数据</span>
<span>21</span> <span>SELECT</span> <span>*</span> <span>FROM</span> t1</span>
View Code

 SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片九)

 SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

 (图片十)

堆表这里使用的是ALLOCATION SCAN

因为分配页面的时候是根据c1列的值从1~12进行分配的

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片十一)

109页面存放的c1值是1

120页面存放的c1值是2

174页面存放的c1值是3

193页面存放的c1值是4

8316页面存放的c1值是5

8340页面存放的c1值是6

8351页面存放的c1值是7

8353页面存放的c1值是8

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片十二)

这里执行计划在流聚合之前并没有进行排序的原因:因为建表进行页面分配的时候已经按照C1列的值进行有序的页面分配

所以当ALLOCATION SCAN的时候,C1列已经是有序的了

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片十三)

不明白的童鞋可以再看一下:SQLSERVER中的ALLOCATION SCAN和RANGE SCAN

为什麽SQLSERVER选择统计C1列的值,因为C1列的值是可以排序的,C2列不能排序,统计不了

那么如果一个表中没有可以用来排序的列呢????

先drop掉t1表,再建立t1表,脚本如下:

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

<span> 1</span> <span>CREATE</span> <span>TABLE</span> t1(c1 <span>VARCHAR</span> (<span>2</span>), c2 <span>VARCHAR</span> (<span>8000</span><span>));
</span><span> 2</span> <span>GO</span>
<span> 3</span> 
<span> 4</span> 
<span> 5</span> <span>--</span><span>插入测试数据</span>
<span> 6</span> <span>DECLARE</span> <span>@a</span> <span>INT</span><span>;
</span><span> 7</span> <span>SELECT</span> <span>@a</span> <span>=</span> <span>1</span><span>;
</span><span> 8</span> <span>WHILE</span> (<span>@a</span> <span> <span>12</span><span>)
</span><span> 9</span> <span>BEGIN</span>
<span>10</span>     <span>INSERT</span> <span>INTO</span> t1 <span>VALUES</span> (<span>'</span><span>a</span><span>'</span>, <span>replicate</span>(<span>'</span><span>a</span><span>'</span>, <span>5000</span><span>))
</span><span>11</span>     <span>SELECT</span> <span>@a</span> <span>=</span> <span>@a</span> <span>+</span> <span>1</span>
<span>12</span> <span>END</span>
<span>13</span> <span>GO</span>
<span>14</span>  
<span>15</span> 
<span>16</span> <span>--</span><span>查询数据</span>
<span>17</span> <span>SELECT</span> <span>*</span> <span>FROM</span> t1</span>
View Code

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

结果是

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片十四)

我觉得SQLSERVER应该会在表中加上一列,类似用来区分聚集索引页面重复值的UNIQUIFIER(KEY)

当查询完毕之后就删除掉这一列

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片十五)

 


非聚集索引表

SQL脚本如下:

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

<span> 1</span> <span>CREATE</span> <span>TABLE</span> nct1(c1 <span>INT</span>, c2 <span>VARCHAR</span> (<span>8000</span><span>));
</span><span> 2</span> <span>GO</span>
<span> 3</span> <span>--</span><span>建立非聚集索引</span>
<span> 4</span> <span>CREATE</span>  <span>INDEX</span> nt1c1 <span>ON</span><span> nct1(c1);
</span><span> 5</span> <span>GO</span>
<span> 6</span>  
<span> 7</span> <span>--</span><span>插入数据</span>
<span> 8</span> <span>DECLARE</span> <span>@a</span> <span>INT</span><span>;
</span><span> 9</span> <span>SELECT</span> <span>@a</span> <span>=</span> <span>1</span><span>;
</span><span>10</span> <span>WHILE</span> (<span>@a</span> <span> <span>10</span><span>)
</span><span>11</span> <span>BEGIN</span>
<span>12</span>     <span>INSERT</span> <span>INTO</span> nct1 <span>VALUES</span> (<span>@a</span>, <span>replicate</span>(<span>'</span><span>a</span><span>'</span>, <span>5000</span><span>))
</span><span>13</span>     <span>SELECT</span> <span>@a</span> <span>=</span> <span>@a</span> <span>+</span> <span>1</span>
<span>14</span> <span>END</span>
<span>15</span> <span>GO</span>
<span>16</span> 
<span>17</span> <span>--</span><span>查询数据</span>
<span>18</span> <span>SELECT</span> <span>*</span> <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>nct1</span><span>]</span>
<span>19</span>  </span>
View Code

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片十六)

大家一定要记住:非聚集索引是建立在c1列上的!!!

下面两个SQL语句都是一样的,都是根据c1列的值进行统计,而SQLSERVER只扫描非聚集索引页面,而不扫描数据页面

<span>1</span> <span>SELECT</span>  <span>COUNT</span>(<span>*</span>) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>nct1</span><span>]</span>
<span>2</span> 
<span>3</span> <span>SELECT</span>  <span>COUNT</span>(<span>3</span>) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>nct1</span><span>]</span>

SELECT  COUNT(*) FROM [dbo].[nct1]是不需要到数据页面去读取c2列的数据的,只需要扫描非聚集索引页面(c1列)就可以了

SELECT  COUNT(3) FROM [dbo].[nct1]跟SELECT  COUNT(*) FROM [dbo].[nct1]也是一样

不知道大家还记得书签查找不,如果SQLSERVER扫描了非聚集索引页面之后还需要到数据页面去读取其他字段的数据的话,就需要RID查找运算符

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片十七)

SQLSERVER聚集索引与非聚集索引的再次研究(下)

SELECT  COUNT(*) FROM [dbo].[nct1]和SELECT  COUNT(3) FROM [dbo].[nct1]的扫描方式跟前面说的聚集索引表是差不多的

这里就不一一叙述了~

 

而SELECT  COUNT(c2) FROM [dbo].[nct1]为什麽会用表扫描呢?

<span>1</span> <span>SELECT</span>  <span>COUNT</span>(c2) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>nct1</span><span>]</span>

c2列不在非聚集索引页面里,所以需要表扫描
SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片十八)

SELECT  COUNT(c2) FROM [dbo].[nct1]跟前面说的堆表是差不多的,这里就不一一叙述了


总结

做了这麽多实验

可以总结出:select count(*)、count(数字)、count(字段名)是没有性能差别的!!

我说的没有差别是在相同的条件下,就像非聚集索引表,如果使用

SELECT  COUNT(c2) FROM [dbo].[nct1]

SELECT  COUNT(*) FROM [dbo].[nct1]、SELECT  COUNT(3) FROM [dbo].[nct1]相比肯定有差别

因为SELECT  COUNT(c2) FROM [dbo].[nct1]走的是表扫描

如果SELECT  COUNT(c1) FROM [dbo].[nct1]

SELECT  COUNT(*) FROM [dbo].[nct1]、SELECT  COUNT(3) FROM [dbo].[nct1]相比是没有差别的

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

(图片十九)

大家走的都是非聚集索引扫描

 

无论是聚集索引表、堆表、非聚集索引表都是扫描表中的记录来统计出表中的行数的

 

希望大家看完这篇文章之后,不再一知半解了,这是我的希望o(∩_∩)o

 

如有不对的地方,欢迎大家拍砖o(∩_∩)o

 

-----------------------------------------------------------------------

补上IO和时间的比较 2013-10-19

---------------------------------

聚集索引表

<span>1</span> <span>SET</span> <span>STATISTICS</span> IO <span>ON</span>
<span>2</span> <span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>
<span>3</span> <span>GO</span>
<span>4</span> <span>SELECT</span> <span>COUNT</span>(<span>*</span>) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>ct1</span><span>]</span>

<span>1</span> <span>SQL Server 分析和编译时间: 
</span><span>2</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>2</span><span> 毫秒。
</span><span>3</span> 
<span>4</span> (<span>1</span><span> 行受影响)
</span><span>5</span> 表 <span>'</span><span>ct1</span><span>'</span>。扫描计数 <span>1</span>,逻辑读取 <span>5</span> 次,物理读取 <span>0</span> 次,预读 <span>0</span> 次,lob 逻辑读取 <span>0</span> 次,lob 物理读取 <span>0</span> 次,lob 预读 <span>0</span><span> 次。
</span><span>6</span> 
<span>7</span> <span>SQL Server 执行时间:
</span><span>8</span>    CPU 时间 <span>=</span> <span>15</span> 毫秒,占用时间 <span>=</span> <span>2</span> 毫秒。

<span>1</span> <span>SET</span> <span>STATISTICS</span> IO <span>ON</span>
<span>2</span> <span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>
<span>3</span> <span>GO</span>
<span>4</span> <span>SELECT</span> <span>COUNT</span>(<span>1</span>) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>ct1</span><span>]</span>

<span>1</span> <span>SQL Server 分析和编译时间: 
</span><span>2</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>2</span><span> 毫秒。
</span><span>3</span> 
<span>4</span> (<span>1</span><span> 行受影响)
</span><span>5</span> 表 <span>'</span><span>ct1</span><span>'</span>。扫描计数 <span>1</span>,逻辑读取 <span>5</span> 次,物理读取 <span>0</span> 次,预读 <span>0</span> 次,lob 逻辑读取 <span>0</span> 次,lob 物理读取 <span>0</span> 次,lob 预读 <span>0</span><span> 次。
</span><span>6</span> 
<span>7</span> <span>SQL Server 执行时间:
</span><span>8</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span> 毫秒。

<span>1</span> <span>SET</span> <span>STATISTICS</span> IO <span>ON</span>
<span>2</span> <span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>
<span>3</span> <span>GO</span>
<span>4</span> <span>SELECT</span> <span>COUNT</span>(c1) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>ct1</span><span>]</span>

<span>1</span> <span>SQL Server 分析和编译时间: 
</span><span>2</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>1</span><span> 毫秒。
</span><span>3</span> 
<span>4</span> (<span>1</span><span> 行受影响)
</span><span>5</span> 表 <span>'</span><span>ct1</span><span>'</span>。扫描计数 <span>1</span>,逻辑读取 <span>5</span> 次,物理读取 <span>0</span> 次,预读 <span>0</span> 次,lob 逻辑读取 <span>0</span> 次,lob 物理读取 <span>0</span> 次,lob 预读 <span>0</span><span> 次。
</span><span>6</span> 
<span>7</span> <span>SQL Server 执行时间:
</span><span>8</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span> 毫秒。

---------------------------------------------------

堆表

<span>1</span> <span>SET</span> <span>STATISTICS</span> IO <span>ON</span>
<span>2</span> <span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>
<span>3</span> <span>GO</span>
<span>4</span> <span>SELECT</span> <span>COUNT</span>(<span>*</span>) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>t1</span><span>]</span>

<span> 1</span> <span>SQL Server 分析和编译时间: 
</span><span> 2</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 3</span> 
<span> 4</span> <span>SQL Server 执行时间:
</span><span> 5</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 6</span> 
<span> 7</span> <span>SQL Server 执行时间:
</span><span> 8</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 9</span> <span>SQL Server 分析和编译时间: 
</span><span>10</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span>11</span> 
<span>12</span> (<span>1</span><span> 行受影响)
</span><span>13</span> 表 <span>'</span><span>t1</span><span>'</span>。扫描计数 <span>1</span>,逻辑读取 <span>12</span> 次,物理读取 <span>0</span> 次,预读 <span>0</span> 次,lob 逻辑读取 <span>0</span> 次,lob 物理读取 <span>0</span> 次,lob 预读 <span>0</span><span> 次。
</span><span>14</span> 
<span>15</span> <span>SQL Server 执行时间:
</span><span>16</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span> 毫秒。

<span>1</span> <span>SET</span> <span>STATISTICS</span> IO <span>ON</span>
<span>2</span> <span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>
<span>3</span> <span>GO</span>
<span>4</span> <span>SELECT</span> <span>COUNT</span>(<span>1</span>) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>t1</span><span>]</span>

<span> 1</span> <span>SQL Server 分析和编译时间: 
</span><span> 2</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 3</span> 
<span> 4</span> <span>SQL Server 执行时间:
</span><span> 5</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 6</span> 
<span> 7</span> <span>SQL Server 执行时间:
</span><span> 8</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 9</span> <span>SQL Server 分析和编译时间: 
</span><span>10</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>79</span><span> 毫秒。
</span><span>11</span> 
<span>12</span> (<span>1</span><span> 行受影响)
</span><span>13</span> 表 <span>'</span><span>t1</span><span>'</span>。扫描计数 <span>1</span>,逻辑读取 <span>12</span> 次,物理读取 <span>0</span> 次,预读 <span>0</span> 次,lob 逻辑读取 <span>0</span> 次,lob 物理读取 <span>0</span> 次,lob 预读 <span>0</span><span> 次。
</span><span>14</span> 
<span>15</span> <span>SQL Server 执行时间:
</span><span>16</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span> 毫秒。

<span>1</span> <span>SET</span> <span>STATISTICS</span> IO <span>ON</span>
<span>2</span> <span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>
<span>3</span> <span>GO</span>
<span>4</span> <span>SELECT</span> <span>COUNT</span>(c1) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>t1</span><span>]</span>

<span> 1</span> <span>SQL Server 分析和编译时间: 
</span><span> 2</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 3</span> 
<span> 4</span> <span>SQL Server 执行时间:
</span><span> 5</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 6</span> 
<span> 7</span> <span>SQL Server 执行时间:
</span><span> 8</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 9</span> <span>SQL Server 分析和编译时间: 
</span><span>10</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>1</span><span> 毫秒。
</span><span>11</span> 
<span>12</span> (<span>1</span><span> 行受影响)
</span><span>13</span> 表 <span>'</span><span>t1</span><span>'</span>。扫描计数 <span>1</span>,逻辑读取 <span>12</span> 次,物理读取 <span>0</span> 次,预读 <span>0</span> 次,lob 逻辑读取 <span>0</span> 次,lob 物理读取 <span>0</span> 次,lob 预读 <span>0</span><span> 次。
</span><span>14</span> 
<span>15</span> <span>SQL Server 执行时间:
</span><span>16</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span> 毫秒。

-----------------------------------------------------------------------------------------

非聚集索引表

<span>1</span> <span>SET</span> <span>STATISTICS</span> IO <span>ON</span>
<span>2</span> <span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>
<span>3</span> <span>GO</span>
<span>4</span> <span>SELECT</span> <span>COUNT</span>(<span>*</span>) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>nct1</span><span>]</span>

<span> 1</span> <span>SQL Server 分析和编译时间: 
</span><span> 2</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 3</span> 
<span> 4</span> <span>SQL Server 执行时间:
</span><span> 5</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 6</span> 
<span> 7</span> <span>SQL Server 执行时间:
</span><span> 8</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 9</span> <span>SQL Server 分析和编译时间: 
</span><span>10</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>1</span><span> 毫秒。
</span><span>11</span> 
<span>12</span> (<span>1</span><span> 行受影响)
</span><span>13</span> 表 <span>'</span><span>nct1</span><span>'</span>。扫描计数 <span>1</span>,逻辑读取 <span>2</span> 次,物理读取 <span>0</span> 次,预读 <span>0</span> 次,lob 逻辑读取 <span>0</span> 次,lob 物理读取 <span>0</span> 次,lob 预读 <span>0</span><span> 次。
</span><span>14</span> 
<span>15</span> <span>SQL Server 执行时间:
</span><span>16</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span> 毫秒。

<span>1</span> <span>SET</span> <span>STATISTICS</span> IO <span>ON</span>
<span>2</span> <span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>
<span>3</span> <span>GO</span>
<span>4</span> <span>SELECT</span> <span>COUNT</span>(<span>1</span>) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>nct1</span><span>]</span>

<span> 1</span> <span>SQL Server 分析和编译时间: 
</span><span> 2</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 3</span> 
<span> 4</span> <span>SQL Server 执行时间:
</span><span> 5</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 6</span> 
<span> 7</span> <span>SQL Server 执行时间:
</span><span> 8</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 9</span> <span>SQL Server 分析和编译时间: 
</span><span>10</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span>11</span> 
<span>12</span> (<span>1</span><span> 行受影响)
</span><span>13</span> 表 <span>'</span><span>nct1</span><span>'</span>。扫描计数 <span>1</span>,逻辑读取 <span>2</span> 次,物理读取 <span>0</span> 次,预读 <span>0</span> 次,lob 逻辑读取 <span>0</span> 次,lob 物理读取 <span>0</span> 次,lob 预读 <span>0</span><span> 次。
</span><span>14</span> 
<span>15</span> <span>SQL Server 执行时间:
</span><span>16</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>49</span> 毫秒。

<span>1</span> <span>SET</span> <span>STATISTICS</span> IO <span>ON</span>
<span>2</span> <span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>
<span>3</span> <span>GO</span>
<span>4</span> <span>SELECT</span> <span>COUNT</span>(c1) <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>nct1</span><span>]</span>

<span> 1</span> <span>SQL Server 分析和编译时间: 
</span><span> 2</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 3</span> 
<span> 4</span> <span>SQL Server 执行时间:
</span><span> 5</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 6</span> 
<span> 7</span> <span>SQL Server 执行时间:
</span><span> 8</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span> 9</span> <span>SQL Server 分析和编译时间: 
</span><span>10</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>0</span><span> 毫秒。
</span><span>11</span> 
<span>12</span> (<span>1</span><span> 行受影响)
</span><span>13</span> 表 <span>'</span><span>nct1</span><span>'</span>。扫描计数 <span>1</span>,逻辑读取 <span>2</span> 次,物理读取 <span>0</span> 次,预读 <span>0</span> 次,lob 逻辑读取 <span>0</span> 次,lob 物理读取 <span>0</span> 次,lob 预读 <span>0</span><span> 次。
</span><span>14</span> 
<span>15</span> <span>SQL Server 执行时间:
</span><span>16</span>    CPU 时间 <span>=</span> <span>0</span> 毫秒,占用时间 <span>=</span> <span>1</span> 毫秒。

 

2014-6-21补充:

<span>USE</span> <span>[</span><span>sss</span><span>]</span>
<span>--</span><span>建表</span>
<span>CREATE</span> <span>TABLE</span> counttb ( id <span>INT</span> <span>NULL</span><span> )

</span><span>--</span><span>插入数据</span>
<span>INSERT</span>  <span>INTO</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>counttb</span><span>]</span><span>
        ( </span><span>[</span><span>id</span><span>]</span><span> )
        </span><span>SELECT</span>  <span>1</span>
        <span>UNION</span> <span>ALL</span>
        <span>SELECT</span>  <span>NULL</span> 

<span>--</span><span>统计行数</span>
<span>SELECT</span>  <span>COUNT</span>(<span>1</span><span>) ,
        </span><span>COUNT</span>(<span>*</span><span>) ,
        </span><span>COUNT</span><span>(id)
</span><span>FROM</span>    <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>counttb</span><span>]</span>


<span>--</span><span>查询索引的统计值</span>
<span>SELECT</span>  a.<span>[</span><span>rowcnt</span><span>]</span><span> ,
        b.</span><span>[</span><span>name</span><span>]</span>
<span>FROM</span>    sys.<span>[</span><span>sysindexes</span><span>]</span> <span>AS</span><span> a
        </span><span>INNER</span> <span>JOIN</span> sys.<span>[</span><span>objects</span><span>]</span> <span>AS</span> b <span>ON</span> a.<span>[</span><span>id</span><span>]</span> <span>=</span> b.<span>[</span><span>object_id</span><span>]</span>
<span>WHERE</span>   b.<span>[</span><span>name</span><span>]</span> <span>=</span> <span>'</span><span>counttb</span><span>'</span>


<span>--</span><span>创建非聚集索引</span>
<span>CREATE</span> <span>INDEX</span> ix_counttb_id <span>ON</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>counttb</span><span>]</span><span> (id)


</span><span>--</span><span>统计行数</span>
<span>SELECT</span>  <span>COUNT</span>(<span>1</span><span>) ,
        </span><span>COUNT</span>(<span>*</span><span>) ,
        </span><span>COUNT</span><span>(id)
</span><span>FROM</span>    <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>counttb</span><span>]</span>

SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

因为在创建非聚集索引前和创建非聚集索引后的行数值都是一样的,可以看出COUNT(*) COUNT(1) 和COUNT(ID)

的统计方式不一样,所以没有可比性

一般我们在统计行数的时候都会把NULL值统计在内的,所以这样的话,最好就是使用COUNT(*) 和COUNT(1) ,这样的速度最快!!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
MySQL String Types: Storage, Performance, and Best PracticesMySQL String Types: Storage, Performance, and Best PracticesMay 10, 2025 am 12:02 AM

MySQLstringtypesimpactstorageandperformanceasfollows:1)CHARisfixed-length,alwaysusingthesamestoragespace,whichcanbefasterbutlessspace-efficient.2)VARCHARisvariable-length,morespace-efficientbutpotentiallyslower.3)TEXTisforlargetext,storedoutsiderows,

Understanding MySQL String Types: VARCHAR, TEXT, CHAR, and MoreUnderstanding MySQL String Types: VARCHAR, TEXT, CHAR, and MoreMay 10, 2025 am 12:02 AM

MySQLstringtypesincludeVARCHAR,TEXT,CHAR,ENUM,andSET.1)VARCHARisversatileforvariable-lengthstringsuptoaspecifiedlimit.2)TEXTisidealforlargetextstoragewithoutadefinedlength.3)CHARisfixed-length,suitableforconsistentdatalikecodes.4)ENUMenforcesdatainte

What are the String Data Types in MySQL?What are the String Data Types in MySQL?May 10, 2025 am 12:01 AM

MySQLoffersvariousstringdatatypes:1)CHARforfixed-lengthstrings,2)VARCHARforvariable-lengthtext,3)BINARYandVARBINARYforbinarydata,4)BLOBandTEXTforlargedata,and5)ENUMandSETforcontrolledinput.Eachtypehasspecificusesandperformancecharacteristics,sochoose

How to Grant Permissions to New MySQL UsersHow to Grant Permissions to New MySQL UsersMay 09, 2025 am 12:16 AM

TograntpermissionstonewMySQLusers,followthesesteps:1)AccessMySQLasauserwithsufficientprivileges,2)CreateanewuserwiththeCREATEUSERcommand,3)UsetheGRANTcommandtospecifypermissionslikeSELECT,INSERT,UPDATE,orALLPRIVILEGESonspecificdatabasesortables,and4)

How to Add Users in MySQL: A Step-by-Step GuideHow to Add Users in MySQL: A Step-by-Step GuideMay 09, 2025 am 12:14 AM

ToaddusersinMySQLeffectivelyandsecurely,followthesesteps:1)UsetheCREATEUSERstatementtoaddanewuser,specifyingthehostandastrongpassword.2)GrantnecessaryprivilegesusingtheGRANTstatement,adheringtotheprincipleofleastprivilege.3)Implementsecuritymeasuresl

MySQL: Adding a new user with complex permissionsMySQL: Adding a new user with complex permissionsMay 09, 2025 am 12:09 AM

ToaddanewuserwithcomplexpermissionsinMySQL,followthesesteps:1)CreatetheuserwithCREATEUSER'newuser'@'localhost'IDENTIFIEDBY'password';.2)Grantreadaccesstoalltablesin'mydatabase'withGRANTSELECTONmydatabase.TO'newuser'@'localhost';.3)Grantwriteaccessto'

MySQL: String Data Types and CollationsMySQL: String Data Types and CollationsMay 09, 2025 am 12:08 AM

The string data types in MySQL include CHAR, VARCHAR, BINARY, VARBINARY, BLOB, and TEXT. The collations determine the comparison and sorting of strings. 1.CHAR is suitable for fixed-length strings, VARCHAR is suitable for variable-length strings. 2.BINARY and VARBINARY are used for binary data, and BLOB and TEXT are used for large object data. 3. Sorting rules such as utf8mb4_unicode_ci ignores upper and lower case and is suitable for user names; utf8mb4_bin is case sensitive and is suitable for fields that require precise comparison.

MySQL: What length should I use for VARCHARs?MySQL: What length should I use for VARCHARs?May 09, 2025 am 12:06 AM

The best MySQLVARCHAR column length selection should be based on data analysis, consider future growth, evaluate performance impacts, and character set requirements. 1) Analyze the data to determine typical lengths; 2) Reserve future expansion space; 3) Pay attention to the impact of large lengths on performance; 4) Consider the impact of character sets on storage. Through these steps, the efficiency and scalability of the database can be optimized.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Atom editor mac version download

Atom editor mac version download

The most popular open source editor