今天有个兄弟跟我说sql跑得太慢了,让我看看。sql如下: SELECT rownum row_num, pv.vendor_name, pha.segment1 po_num, prh.preparer_id, pha.Org_Id, pha.po_header_id, wo.department_code, wo.description oper_seq_desc, to_char(pha.creation_date, 'R
今天有个兄弟跟我说sql跑得太慢了,让我看看。sql如下:
SELECT rownum row_num, pv.vendor_name, pha.segment1 po_num, prh.preparer_id, pha.Org_Id, pha.po_header_id, wo.department_code, wo.description oper_seq_desc, to_char(pha.creation_date, 'RRRR-MM-DD HH24:MI:SS') enter_date, to_char(pha.approved_date, 'RRRR-MM-DD HH24:MI:SS') approved_date, --cux_public_pkg.get_item_no(wdj.primary_item_id) item_no, we.wip_entity_name FROM PO.po_headers_all pha, APPS.po_vendors pv, PO.po_lines_all pla, PO.po_line_locations_all pll, PO.po_distributions_all pld, PO.po_requisition_headers_all prh, PO.po_requisition_lines_all prl, PO.po_req_distributions_all prd, WIP.wip_discrete_jobs wdj, APPS.BOM_STANDARD_OPERATIONS_V bso, APPS.wip_operations_v wo, WIP.wip_entities we WHERE 1 = 1 AND prl.wip_entity_id = we.wip_entity_id AND pha.po_header_id = pla.po_header_id AND pha.vendor_id = pv.vendor_id AND pll.po_line_id = pla.po_line_id AND pll.po_header_id = pha.po_header_id AND pll.line_location_id = pld.line_location_id AND prd.requisition_line_id = prl.requisition_line_id AND pld.req_distribution_id = prd.distribution_id AND prl.requisition_header_id = prh.requisition_header_id AND prl.wip_entity_id = wdj.wip_entity_id AND prl.wip_entity_id = wo.wip_entity_id AND prl.wip_operation_seq_num = wo.operation_seq_num AND wo.standard_operation_id = bso.STANDARD_OPERATION_ID AND wdj.Organization_Id = /*p_organization_id*/83 AND pha.segment1 >= /*nvl(p_po_num_f, pha.segment1)*/'621337540' AND pha.segment1 <= /*nvl(p_po_num_t, pha.segment1)*/ '621337540' AND nvl(pha.approved_date, SYSDATE + 9999) >= nvl(pha.approved_date, SYSDATE + 9999) AND nvl(pha.approved_date, SYSDATE + 9999) <=nvl(pha.approved_date, SYSDATE + 9999) ORDER BY pha.segment1, pla.line_num;
快速的运用sql三段分拆方法(分享过的) 扫描一下,发现没问题 (如果不知道的哥们,请自己百度 落落 sql 三段分拆方法)
SQL里面有个视图wo 视图代码如下:
/*CREATE OR REPLACE VIEW WIP_OPERATIONS_V (row_id, wip_entity_id, operation_seq_num, organization_id, repetitive_schedule_id, last_update_date, last_updated_by, creation_date, created_by, last_update_login, request_id, program_application_id, program_id, program_update_date, operation_sequence_id, standard_operation_id, operation_code, department_id, department_code, location_id, description, scheduled_quantity, quantity_in_queue, quantity_running, quantity_waiting_to_move, quantity_rejected, quantity_scrapped, quantity_completed, first_unit_start_date, first_unit_completion_date, last_unit_start_date, last_unit_completion_date, previous_operation_seq_num, next_operation_seq_num, count_point_type, count_point_flag, autocharge_flag, backflush_flag, minimum_transfer_quantity, date_last_moved, attribute_category, attribute1, attribute2, attribute3, attribute4, attribute5, attribute6, attribute7, attribute8, attribute9, attribute10, attribute11, attribute12, attribute13, attribute14, attribute15, operation_yield, cumulative_scrap_quantity, operation_yield_enabled, operation_completed, shutdown_type, shutdown_type_disp, x_pos, y_pos, long_description, disable_date, recommended, progress_percentage, wsm_bonus_quantity, actual_start_date, actual_completion_date, employee_id, employee_name, lowest_acceptable_yield, check_skill) AS*/ SELECT WO.ROWID ROW_ID, WO.WIP_ENTITY_ID, WO.OPERATION_SEQ_NUM, WO.ORGANIZATION_ID, WO.REPETITIVE_SCHEDULE_ID, WO.LAST_UPDATE_DATE, WO.LAST_UPDATED_BY, WO.CREATION_DATE, WO.CREATED_BY, WO.LAST_UPDATE_LOGIN, WO.REQUEST_ID, WO.PROGRAM_APPLICATION_ID, WO.PROGRAM_ID, WO.PROGRAM_UPDATE_DATE, WO.OPERATION_SEQUENCE_ID, WO.STANDARD_OPERATION_ID, BSO.OPERATION_CODE, WO.DEPARTMENT_ID, BD.DEPARTMENT_CODE, BD.LOCATION_ID, WO.DESCRIPTION, WO.SCHEDULED_QUANTITY, DECODE(WO.QUANTITY_IN_QUEUE, 0, NULL, WO.QUANTITY_IN_QUEUE), DECODE(WO.QUANTITY_RUNNING, 0, NULL, WO.QUANTITY_RUNNING), DECODE(WO.QUANTITY_WAITING_TO_MOVE, 0, NULL, WO.QUANTITY_WAITING_TO_MOVE), DECODE(WO.QUANTITY_REJECTED, 0, NULL, WO.QUANTITY_REJECTED), DECODE(WO.QUANTITY_SCRAPPED, 0, NULL, WO.QUANTITY_SCRAPPED), DECODE(WO.QUANTITY_COMPLETED, 0, NULL, WO.QUANTITY_COMPLETED), WO.FIRST_UNIT_START_DATE, WO.FIRST_UNIT_COMPLETION_DATE, WO.LAST_UNIT_START_DATE, WO.LAST_UNIT_COMPLETION_DATE, WO.PREVIOUS_OPERATION_SEQ_NUM, WO.NEXT_OPERATION_SEQ_NUM, WO.COUNT_POINT_TYPE, DECODE(WO.COUNT_POINT_TYPE, 1, 1, 2) "COUNT_POINT_FLAG", DECODE(WO.COUNT_POINT_TYPE, 3, 2, 1) "AUTOCHARGE_FLAG", WO.BACKFLUSH_FLAG, WO.MINIMUM_TRANSFER_QUANTITY, WO.DATE_LAST_MOVED, WO.ATTRIBUTE_CATEGORY, WO.ATTRIBUTE1, WO.ATTRIBUTE2, WO.ATTRIBUTE3, WO.ATTRIBUTE4, WO.ATTRIBUTE5, WO.ATTRIBUTE6, WO.ATTRIBUTE7, WO.ATTRIBUTE8, WO.ATTRIBUTE9, WO.ATTRIBUTE10, WO.ATTRIBUTE11, WO.ATTRIBUTE12, WO.ATTRIBUTE13, WO.ATTRIBUTE14, WO.ATTRIBUTE15, WO.OPERATION_YIELD, WO.CUMULATIVE_SCRAP_QUANTITY, WO.OPERATION_YIELD_ENABLED, NVL(WO.OPERATION_COMPLETED, 'N'), WO.SHUTDOWN_TYPE, LU1.MEANING, WO.X_POS, WO.Y_POS, WO.LONG_DESCRIPTION, WO.DISABLE_DATE, WO.RECOMMENDED, WO.PROGRESS_PERCENTAGE, WO.WSM_BONUS_QUANTITY, WO.ACTUAL_START_DATE, WO.ACTUAL_COMPLETION_DATE, WO.EMPLOYEE_ID, PAP.FULL_NAME, WO.LOWEST_ACCEPTABLE_YIELD, nvl(wo.CHECK_SKILL, 2) CHECK_SKILL FROM BOM_DEPARTMENTS BD, BOM_STANDARD_OPERATIONS BSO, WIP_OPERATIONS WO, MFG_LOOKUPS LU1, PER_ALL_PEOPLE_F PAP WHERE BD.DEPARTMENT_ID = WO.DEPARTMENT_ID AND BSO.STANDARD_OPERATION_ID(+) = WO.STANDARD_OPERATION_ID AND NVL(BSO.OPERATION_TYPE, 1) = 1 AND BSO.LINE_ID IS NULL AND LU1.LOOKUP_TYPE(+) = 'BOM_EAM_SHUTDOWN_TYPE' AND LU1.LOOKUP_CODE(+) = WO.SHUTDOWN_TYPE AND WO.EMPLOYEE_ID = PAP.PERSON_ID(+) ORDER BY WO.OPERATION_SEQ_NUM;
我靠视图里面有 ORDER BY ...... 这不是脑残吗? 视图里面你搞ORDER BY 干嘛呢,直接在 视图外面写order by 呀。
select .... from a, v_b where a.id=b.id;
a 是一个表, v_b 是一个视图。 v_b 里面有order by 那么 v_b 是有序的, v_b 里面没order by 那么v_b 是无序的。
但是最终的 sql 返回结果 有没有顺序 是 在 最外面 搞 order by 对吧。
所以让 那哥们把视图里面的order by 给去掉 ,结果里面返回结果了。 执行计划就不 贴了,视图里面有 order by 会干扰执行计划的。
别在视图里面搞ORDER BY ,如果有需要 ,请在 外面sql 进行order by。

MySQL'sBLOBissuitableforstoringbinarydatawithinarelationaldatabase,whileNoSQLoptionslikeMongoDB,Redis,andCassandraofferflexible,scalablesolutionsforunstructureddata.BLOBissimplerbutcanslowdownperformancewithlargedata;NoSQLprovidesbetterscalabilityand

ToaddauserinMySQL,use:CREATEUSER'username'@'host'IDENTIFIEDBY'password';Here'showtodoitsecurely:1)Choosethehostcarefullytocontrolaccess.2)SetresourcelimitswithoptionslikeMAX_QUERIES_PER_HOUR.3)Usestrong,uniquepasswords.4)EnforceSSL/TLSconnectionswith

ToavoidcommonmistakeswithstringdatatypesinMySQL,understandstringtypenuances,choosetherighttype,andmanageencodingandcollationsettingseffectively.1)UseCHARforfixed-lengthstrings,VARCHARforvariable-length,andTEXT/BLOBforlargerdata.2)Setcorrectcharacters

MySQloffersechar, Varchar, text, Anddenumforstringdata.usecharforfixed-Lengthstrings, VarcharerForvariable-Length, text forlarger text, AndenumforenforcingdataAntegritywithaetofvalues.

Optimizing MySQLBLOB requests can be done through the following strategies: 1. Reduce the frequency of BLOB query, use independent requests or delay loading; 2. Select the appropriate BLOB type (such as TINYBLOB); 3. Separate the BLOB data into separate tables; 4. Compress the BLOB data at the application layer; 5. Index the BLOB metadata. These methods can effectively improve performance by combining monitoring, caching and data sharding in actual applications.

Mastering the method of adding MySQL users is crucial for database administrators and developers because it ensures the security and access control of the database. 1) Create a new user using the CREATEUSER command, 2) Assign permissions through the GRANT command, 3) Use FLUSHPRIVILEGES to ensure permissions take effect, 4) Regularly audit and clean user accounts to maintain performance and security.

ChooseCHARforfixed-lengthdata,VARCHARforvariable-lengthdata,andTEXTforlargetextfields.1)CHARisefficientforconsistent-lengthdatalikecodes.2)VARCHARsuitsvariable-lengthdatalikenames,balancingflexibilityandperformance.3)TEXTisidealforlargetextslikeartic

Best practices for handling string data types and indexes in MySQL include: 1) Selecting the appropriate string type, such as CHAR for fixed length, VARCHAR for variable length, and TEXT for large text; 2) Be cautious in indexing, avoid over-indexing, and create indexes for common queries; 3) Use prefix indexes and full-text indexes to optimize long string searches; 4) Regularly monitor and optimize indexes to keep indexes small and efficient. Through these methods, we can balance read and write performance and improve database efficiency.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver CS6
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
