search
HomeDatabaseMysql TutorialMySQL 服务器性能调优 Making sure your MySQL server flies

HOW MYSQL USES MEMORY MySQL uses memory for a variety of internal buffers and caches that influence how often it must access files that reside on disk. The more often it has to wait for a disk to respond, the slower it will be. As fast as

HOW MYSQL USES MEMORY

MySQL uses memory for a variety of internal buffers and caches that influence how often it must access files that reside on disk. The more often it has to wait for a disk to respond, the slower it will be. As fast as modern disk drives are, they're still an order of magnitude (or more) slower than RAM. And given the recent drops in memory prices, odds are pretty good that you can easily afford to add memory to a server if it will speed things up. Upgrading to faster disks should be a last resort.

MySQL's buffers and caches come in two flavors, global and per-thread:

GLOBAL: As its name suggests, these memory areas are allocated once and are shared among all of MySQL's threads. Two of the ones we'll look at are the key buffer and the table cache. Because these are shared buffers, the goal is to make them as large as possible (without unnecessarily taxing our resources).

PER-THREAD: These buffers allocate memory individually to queries as they need to perform particular operations, such as sorting or grouping. Incidentally, most of MySQL's buffers are allocated on this per-thread basis. The per-thread buffers we'll be looking at are the record buffer and the sort buffer.

Let's first examine what function each of the buffers serves and how to set and inspect their values. Then we'll look at how to examine MySQL's performance counters and judge whether or not changes you make are having any significant impact.

KEY BUFFER

The key buffer is where MySQL caches index blocks for MyISAM tables. Anytime a query uses an index, MySQL will first check to see if the relevant index is in memory or not. The key_buffer parameter in your my.cnf file controls how large the buffer is allowed to get. Once the buffer is full, MySQL will make room for new data by replacing older data that hasn't been used recently. (See the Using a my.cnf File sidebar if you're not familiar with MySQL's configuration file.)

The size of the key buffer appears as key_buffer_ size in the output of SHOW VARIABLES. With a 384 MB key buffer, you'd see:

<font>| key_buffer_size         | 402649088<br></font>

As a general recommendation, on a dedicated MySQL server, you should allocate somewhere between 20 percent and 50 percent of your RAM for MySQL's key buffer. If you have a gigabyte of memory, start with something like:

<font>set-variable = key_buffer=128M<br></font>

or even:

<font>set-variable = key_buffer=256M<br></font>

in your my.cnf file and see if you notice a difference. Odds are that you will.

If you were only allowed to adjust one parameter on your MySQL server, the key buffer would be the one to try. Indexes are so important to the overall performance of any database server that it's hard to go wrong with making more room in memory for them.

If you do not specify a size for the key buffer, MySQL will use its default size, which is in the neighborhood of 8 MB. Of course, it makes little sense to set the value for your key buffer too high. Doing so could potentially starve the operating system of memory that it needs for disk buffering and other tasks.

It might also be helpful to look at how much index data you have on disk. Simply find the size of all the .MYI files under MySQL's data directory:

<font>$ du -sh */*.MYI<br></font>

Knowing how much index data you have, you can better judge how much benefit you are likely to see from increasing the size of the key buffer beyond a certain point. If some of your index files belong to tables that are infrequently used, there is little point in making room for them. But it's clear that any large or medium-sized database will normally benefit from a larger key buffer.


Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Explain the InnoDB Buffer Pool and its importance for performance.Explain the InnoDB Buffer Pool and its importance for performance.Apr 19, 2025 am 12:24 AM

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

MySQL vs. Other Programming Languages: A ComparisonMySQL vs. Other Programming Languages: A ComparisonApr 19, 2025 am 12:22 AM

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages ​​such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages ​​have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

Learning MySQL: A Step-by-Step Guide for New UsersLearning MySQL: A Step-by-Step Guide for New UsersApr 19, 2025 am 12:19 AM

MySQL is worth learning because it is a powerful open source database management system suitable for data storage, management and analysis. 1) MySQL is a relational database that uses SQL to operate data and is suitable for structured data management. 2) The SQL language is the key to interacting with MySQL and supports CRUD operations. 3) The working principle of MySQL includes client/server architecture, storage engine and query optimizer. 4) Basic usage includes creating databases and tables, and advanced usage involves joining tables using JOIN. 5) Common errors include syntax errors and permission issues, and debugging skills include checking syntax and using EXPLAIN commands. 6) Performance optimization involves the use of indexes, optimization of SQL statements and regular maintenance of databases.

MySQL: Essential Skills for Beginners to MasterMySQL: Essential Skills for Beginners to MasterApr 18, 2025 am 12:24 AM

MySQL is suitable for beginners to learn database skills. 1. Install MySQL server and client tools. 2. Understand basic SQL queries, such as SELECT. 3. Master data operations: create tables, insert, update, and delete data. 4. Learn advanced skills: subquery and window functions. 5. Debugging and optimization: Check syntax, use indexes, avoid SELECT*, and use LIMIT.

MySQL: Structured Data and Relational DatabasesMySQL: Structured Data and Relational DatabasesApr 18, 2025 am 12:22 AM

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.

MySQL: Key Features and Capabilities ExplainedMySQL: Key Features and Capabilities ExplainedApr 18, 2025 am 12:17 AM

MySQL is an open source relational database management system that is widely used in Web development. Its key features include: 1. Supports multiple storage engines, such as InnoDB and MyISAM, suitable for different scenarios; 2. Provides master-slave replication functions to facilitate load balancing and data backup; 3. Improve query efficiency through query optimization and index use.

The Purpose of SQL: Interacting with MySQL DatabasesThe Purpose of SQL: Interacting with MySQL DatabasesApr 18, 2025 am 12:12 AM

SQL is used to interact with MySQL database to realize data addition, deletion, modification, inspection and database design. 1) SQL performs data operations through SELECT, INSERT, UPDATE, DELETE statements; 2) Use CREATE, ALTER, DROP statements for database design and management; 3) Complex queries and data analysis are implemented through SQL to improve business decision-making efficiency.

MySQL for Beginners: Getting Started with Database ManagementMySQL for Beginners: Getting Started with Database ManagementApr 18, 2025 am 12:10 AM

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools