说起数据类型转换,在开发中如此,在数据库中也是如此,之前简单对比过MySQL和Oracle的数据类型转换情况,可以参见MySQL和Oracle
说起数据类型转换,在开发中如此,在数据库中也是如此,之前简单对比过MySQL和Oracle的数据类型转换情况,可以参见MySQL和Oracle中的隐式转换
不过当时写完之后,有个读者随口问了一句为什么,为什么呢?似乎自己还是一知半解,说是规则,无规矩不成方圆,倒也无可非议,不过我觉得还是要再看看,看看还能有哪些收获,接下来的内容我就不能保证正确性了,希望大家明辨,也希望提出意见,毕竟就是希望把问题搞明白而已。
首先开发语言中就有数据类型的隐式转换,这一点在java中尤为明显,毕竟一个承载了太多使命的语言如此庞大,又是强类型语言,数据类型的转换就是一个尤为重要的部分了。Java中的数据类型转换主要有下面的规则。
//转换规则:从存储范围小的类型到存储范围大的类型。
//具体规则为:byte→short(char)→int→long→float→double
自己也嘚瑟了一下,写了个简单的小程序以示明证,这个程序不能说明我会java.
public class Test {
public static void main(String args[]){
/*1*/ System.out.println("aa");
/*2*/ System.out.println('a');
/*3*/ byte a=10;
/*4*/ System.out.println(a);
/*5*/ char b='b';
/*6*/ int c=b;
/*7*/ System.out.println(b);
/*8*/ System.out.println(c);
}
}
这个程序的输出为
aa
a
10
b
98
这样写的目的就是,
第1行,第2行中的单引号,双引号需要做的事情就是标示它是一个变量值,两者的效果在这个时候是一致的。
第3行初始化了一个byte变量,然后输出,这个时候还是byte
但是第5行声明了一个char型变量,然后在第6行中做了类型的隐式转换,在第7行中输出为字符b,但是在第8行输出为
通过这个简单的例子可以发现确实数据类型做了隐式转换,而且单引号,双引号在这个例子中的作用是一致的,就是标示变量。
因为在Java中查看数据类型的转换代价还是相对要困难一些,我们可以在数据库中来类比。
首先还是重复之前的测试,准备一批的数据。创建一个表,然后插入一些值。
create table test (id1 number,id2 varchar2(10));
begin
for i in 1..100 loop
insert into test values(i,chr(39)||i||chr(39));
end loop;
commit;
end;
/
create index ind1_test on n1.test(id1);
create index ind2_test on n1.test(id2);
然后收集统计信息。
exec dbms_stats.gather_table_stats('TEST','TEST',CASCADE=>TRUE);
这个时候查看执行计划
explain plan for select *from test where id1='2';
SQL> select *from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------------------------
Plan hash value: 2759464289
-----------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 20 | 1 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| TEST | 1 | 20 | 1 (0)| 00:00:01 |
|* 2 | INDEX RANGE SCAN | IND1_TEST | 1 | | 1 (0)| 00:00:01 |
-----------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
PLAN_TABLE_OUTPUT
-------------------------------------------------------------
2 - access("ID1"=2)
通过这个确实可以看到谓词信息的部分 2 - access("ID1"=2) 已经自动做了转换,这个时候一个触发了一个索引扫描。
但是这个过程还是看不出有数据类型转换的痕迹,我们做一个看似有问题的例子,来触发一下。尽管id1位int型,但是使用字符型来触发。
SQL> explain plan for select *from test where id1='A';
Explained.
SQL> select *from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------------------------
Plan hash value: 2759464289
-----------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 20 | 1 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| TEST | 1 | 20 | 1 (0)| 00:00:01 |
|* 2 | INDEX RANGE SCAN | IND1_TEST | 1 | | 1 (0)| 00:00:01 |
-----------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
PLAN_TABLE_OUTPUT
------------------------------------------------
2 - access("ID1"=TO_NUMBER('A'))
可以看到谓词信息已经发生了变化。 2 - access("ID1"=TO_NUMBER('A'))从这个地方我们可以看到确实触发了一个to_number的操作。
而优化器在这个时候虽然触发了,但是在sql运行的时候,就会报出错误,这个时候可以看到Oracle还是蛮严谨的。
SQL> select *from test where id1='A';
select *from test where id1='A'
*
ERROR at line 1:
ORA-01722: invalid number
而如果使用双引号,生成执行计划都会抛错。
SQL> explain plan for select *from test where id1="A";
explain plan for select *from test where id1="A"
*
ERROR at line 1:
ORA-00904: "A": invalid identifier
可见单引号和双引号在Oracle代表的含义还是有很大差别。

Stored procedures are precompiled SQL statements in MySQL for improving performance and simplifying complex operations. 1. Improve performance: After the first compilation, subsequent calls do not need to be recompiled. 2. Improve security: Restrict data table access through permission control. 3. Simplify complex operations: combine multiple SQL statements to simplify application layer logic.

The working principle of MySQL query cache is to store the results of SELECT query, and when the same query is executed again, the cached results are directly returned. 1) Query cache improves database reading performance and finds cached results through hash values. 2) Simple configuration, set query_cache_type and query_cache_size in MySQL configuration file. 3) Use the SQL_NO_CACHE keyword to disable the cache of specific queries. 4) In high-frequency update environments, query cache may cause performance bottlenecks and needs to be optimized for use through monitoring and adjustment of parameters.

The reasons why MySQL is widely used in various projects include: 1. High performance and scalability, supporting multiple storage engines; 2. Easy to use and maintain, simple configuration and rich tools; 3. Rich ecosystem, attracting a large number of community and third-party tool support; 4. Cross-platform support, suitable for multiple operating systems.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver CS6
Visual web development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

WebStorm Mac version
Useful JavaScript development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
