Heim >Datenbank >MySQL-Tutorial >Schreiben Sie die Einfügeoperation des B+-Baums in Python

Schreiben Sie die Einfügeoperation des B+-Baums in Python

WBOY
WBOYnach vorne
2024-01-23 09:12:14833Durchsuche

Schreiben Sie die Einfügeoperation des B+-Baums in Python

B+-Baumeinfügungsvorgang muss Knoten und Gleichgewicht berücksichtigen. Wenn es sich um einen leeren Baum handelt, fügen Sie den Schlüssel in aufsteigender Reihenfolge in den Blattknoten ein. Wenn es sich nicht um einen leeren Baum handelt, müssen Sie den Indexknoten unterscheiden Wenn die Bedingungen nicht erfüllt sind, muss der Knoten abgebaut werden.

Python implementiert den B+-Baum-Einfügevorgang

import math
# 创建节点
class Node:
    def __init__(self, order):
        self.order = order
        self.values = []
        self.keys = []
        self.nextKey = None
        self.parent = None
        self.check_leaf = False

    def insert_at_leaf(self, leaf, value, key):
        if (self.values):
            temp1 = self.values
            for i in range(len(temp1)):
                if (value == temp1[i]):
                    self.keys[i].append(key)
                    break
                elif (value < temp1[i]):
                    self.values = self.values[:i] + [value] + self.values[i:]
                    self.keys = self.keys[:i] + [[key]] + self.keys[i:]
                    break
                elif (i + 1 == len(temp1)):
                    self.values.append(value)
                    self.keys.append([key])
                    break
        else:
            self.values = [value]
            self.keys = [[key]]


# B+树
class BplusTree:
    def __init__(self, order):
        self.root = Node(order)
        self.root.check_leaf = True

    # 插入操作
    def insert(self, value, key):
        value = str(value)
        old_node = self.search(value)
        old_node.insert_at_leaf(old_node, value, key)

        if (len(old_node.values) == old_node.order):
            node1 = Node(old_node.order)
            node1.check_leaf = True
            node1.parent = old_node.parent
            mid = int(math.ceil(old_node.order / 2)) - 1
            node1.values = old_node.values[mid + 1:]
            node1.keys = old_node.keys[mid + 1:]
            node1.nextKey = old_node.nextKey
            old_node.values = old_node.values[:mid + 1]
            old_node.keys = old_node.keys[:mid + 1]
            old_node.nextKey = node1
            self.insert_in_parent(old_node, node1.values[0], node1)

    # 搜索操作
    def search(self, value):
        current_node = self.root
        while(current_node.check_leaf == False):
            temp2 = current_node.values
            for i in range(len(temp2)):
                if (value == temp2[i]):
                    current_node = current_node.keys[i + 1]
                    break
                elif (value < temp2[i]):
                    current_node = current_node.keys[i]
                    break
                elif (i + 1 == len(current_node.values)):
                    current_node = current_node.keys[i + 1]
                    break
        return current_node

    # 搜索节点
    def find(self, value, key):
        l = self.search(value)
        for i, item in enumerate(l.values):
            if item == value:
                if key in l.keys[i]:
                    return True
                else:
                    return False
        return False

    # 在父级插入
    def insert_in_parent(self, n, value, ndash):
        if (self.root == n):
            rootNode = Node(n.order)
            rootNode.values = [value]
            rootNode.keys = [n, ndash]
            self.root = rootNode
            n.parent = rootNode
            ndash.parent = rootNode
            return

        parentNode = n.parent
        temp3 = parentNode.keys
        for i in range(len(temp3)):
            if (temp3[i] == n):
                parentNode.values = parentNode.values[:i] + \
                    [value] + parentNode.values[i:]
                parentNode.keys = parentNode.keys[:i +
                                                  1] + [ndash] + parentNode.keys[i + 1:]
                if (len(parentNode.keys) > parentNode.order):
                    parentdash = Node(parentNode.order)
                    parentdash.parent = parentNode.parent
                    mid = int(math.ceil(parentNode.order / 2)) - 1
                    parentdash.values = parentNode.values[mid + 1:]
                    parentdash.keys = parentNode.keys[mid + 1:]
                    value_ = parentNode.values[mid]
                    if (mid == 0):
                        parentNode.values = parentNode.values[:mid + 1]
                    else:
                        parentNode.values = parentNode.values[:mid]
                    parentNode.keys = parentNode.keys[:mid + 1]
                    for j in parentNode.keys:
                        j.parent = parentNode
                    for j in parentdash.keys:
                        j.parent = parentdash
                    self.insert_in_parent(parentNode, value_, parentdash)

# 输出树
def printTree(tree):
    lst = [tree.root]
    level = [0]
    leaf = None
    flag = 0
    lev_leaf = 0

    node1 = Node(str(level[0]) + str(tree.root.values))

    while (len(lst) != 0):
        x = lst.pop(0)
        lev = level.pop(0)
        if (x.check_leaf == False):
            for i, item in enumerate(x.keys):
                print(item.values)
        else:
            for i, item in enumerate(x.keys):
                print(item.values)
            if (flag == 0):
                lev_leaf = lev
                leaf = x
                flag = 1

record_len = 3
bplustree = BplusTree(record_len)
bplustree.insert(&#x27;5&#x27;, &#x27;33&#x27;)
bplustree.insert(&#x27;15&#x27;, &#x27;21&#x27;)
bplustree.insert(&#x27;25&#x27;, &#x27;31&#x27;)
bplustree.insert(&#x27;35&#x27;, &#x27;41&#x27;)
bplustree.insert(&#x27;45&#x27;, &#x27;10&#x27;)

printTree(bplustree)

if(bplustree.find(&#x27;5&#x27;, &#x27;34&#x27;)):
    print("Found")
else:
    print("Not found")

Das obige ist der detaillierte Inhalt vonSchreiben Sie die Einfügeoperation des B+-Baums in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Dieser Artikel ist reproduziert unter:163.com. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen