Heim >Datenbank >MySQL-Tutorial >Prinzipdiagramm der Python-Implementierung des B-Tree-Einfügungsalgorithmus
B-Baum ist ein hochausgeglichener binärer Suchbaum. Um einen Einfügevorgang durchzuführen, müssen Sie zunächst die Position des eingefügten Knotens ermitteln, damit dieser größer als der linke Teilbaum und kleiner als der rechte Teilbaum ist notwendig.
<code>BreeInsertion(T, k)r root[T]if n[r] = 2t - 1<br/> s = AllocateNode()<br/> root[T] = s<br/> leaf[s] = FALSE<br/> n[s] <- 0<br/> c1[s] <- r<br/> BtreeSplitChild(s, 1, r)<br/> BtreeInsertNonFull(s, k)else BtreeInsertNonFull(r, k)BtreeInsertNonFull(x, k)i = n[x]if leaf[x]<br/> while i ≥ 1 and k < keyi[x]<br/> keyi+1 [x] = keyi[x]<br/> i = i - 1<br/> keyi+1[x] = k<br/> n[x] = n[x] + 1else while i ≥ 1 and k < keyi[x]<br/> i = i - 1<br/> i = i + 1<br/> if n[ci[x]] == 2t - 1<br/> BtreeSplitChild(x, i, ci[x])<br/> if k &rt; keyi[x]<br/> i = i + 1<br/> BtreeInsertNonFull(ci[x], k)BtreeSplitChild(x, i)BtreeSplitChild(x, i, y)z = AllocateNode()leaf[z] = leaf[y]n[z] = t - 1for j = 1 to t - 1<br/> keyj[z] = keyj+t[y]if not leaf [y]<br/> for j = 1 to t<br/> cj[z] = cj + t[y]n[y] = t - 1for j = n[x] + 1 to i + 1<br/> cj+1[x] = cj[x]ci+1[x] = zfor j = n[x] to i<br/> keyj+1[x] = keyj[x]keyi[x] = keyt[y]n[x] = n[x] + 1</code>
<code>class BTreeNode:<br/> def __init__(self, leaf=False):<br/> self.leaf = leaf<br/> self.keys = []<br/> self.child = []<br/> <br/>class BTree:<br/> def __init__(self, t):<br/> self.root = BTreeNode(True)<br/> self.t = t<br/> <br/> def insert(self, k):<br/> root = self.root<br/> if len(root.keys) == (2 * self.t) - 1:<br/> temp = BTreeNode()<br/> self.root = temp<br/> temp.child.insert(0, root)<br/> self.split_child(temp, 0)<br/> self.insert_non_full(temp, k)<br/> else:<br/> self.insert_non_full(root, k)<br/> <br/> def insert_non_full(self, x, k):<br/> i = len(x.keys) - 1<br/> if x.leaf:<br/> x.keys.append((None, None))<br/> while i >= 0 and k[0] < x.keys[i][0]:<br/> x.keys[i + 1] = x.keys[i]<br/> i -= 1<br/> x.keys[i + 1] = k<br/> else:<br/> while i >= 0 and k[0] < x.keys[i][0]:<br/> i -= 1<br/> i += 1<br/> if len(x.child[i].keys) == (2 * self.t) - 1:<br/> self.split_child(x, i)<br/> if k[0] > x.keys[i][0]:<br/> i += 1<br/> self.insert_non_full(x.child[i], k)<br/> <br/> def split_child(self, x, i):<br/> t = self.t<br/> y = x.child[i]<br/> z = BTreeNode(y.leaf)<br/> x.child.insert(i + 1, z)<br/> x.keys.insert(i, y.keys[t - 1])<br/> z.keys = y.keys[t: (2 * t) - 1]<br/> y.keys = y.keys[0: t - 1]<br/> if not y.leaf:<br/> z.child = y.child[t: 2 * t]<br/> y.child = y.child[0: t - 1]<br/> <br/> def print_tree(self, x, l=0):<br/> print("Level ", l, " ", len(x.keys), end=":")<br/> for i in x.keys:<br/> print(i, end=" ")<br/> print()<br/> l += 1<br/> if len(x.child) > 0:<br/> for i in x.child:<br/> self.print_tree(i, l)<br/> <br/>def main():<br/> B = BTree(3)<br/> <br/> for i in range(10):<br/> B.insert((i, 2 * i))<br/> <br/> B.print_tree(B.root)<br/> <br/>if __name__ == '__main__':<br/> main()</code>
Das obige ist der detaillierte Inhalt vonPrinzipdiagramm der Python-Implementierung des B-Tree-Einfügungsalgorithmus. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!