Heim >Datenbank >MySQL-Tutorial >Prinzipdiagramm der Python-Implementierung des B-Tree-Einfügungsalgorithmus

Prinzipdiagramm der Python-Implementierung des B-Tree-Einfügungsalgorithmus

PHPz
PHPznach vorne
2024-01-22 21:57:131178Durchsuche

B-Baum ist ein hochausgeglichener binärer Suchbaum. Um einen Einfügevorgang durchzuführen, müssen Sie zunächst die Position des eingefügten Knotens ermitteln, damit dieser größer als der linke Teilbaum und kleiner als der rechte Teilbaum ist notwendig.

Verstehen Sie das Funktionsprinzip der B-Tree-Einfügung mit einem Bild

B树插入操作原理图解 Python实现B树插入算法

B-Tree-Einfügungsalgorithmus

<code>BreeInsertion(T, k)r  root[T]if n[r] = 2t - 1<br/>    s = AllocateNode()<br/>    root[T] = s<br/>    leaf[s] = FALSE<br/>    n[s] <- 0<br/>    c1[s] <- r<br/>    BtreeSplitChild(s, 1, r)<br/>    BtreeInsertNonFull(s, k)else BtreeInsertNonFull(r, k)BtreeInsertNonFull(x, k)i = n[x]if leaf[x]<br/>    while i ≥ 1 and k < keyi[x]<br/>        keyi+1 [x] = keyi[x]<br/>        i = i - 1<br/>    keyi+1[x] = k<br/>    n[x] = n[x] + 1else while i ≥ 1 and k < keyi[x]<br/>        i = i - 1<br/>    i = i + 1<br/>    if n[ci[x]] == 2t - 1<br/>        BtreeSplitChild(x, i, ci[x])<br/>        if k &rt; keyi[x]<br/>            i = i + 1<br/>    BtreeInsertNonFull(ci[x], k)BtreeSplitChild(x, i)BtreeSplitChild(x, i, y)z = AllocateNode()leaf[z] = leaf[y]n[z] = t - 1for j = 1 to t - 1<br/>    keyj[z] = keyj+t[y]if not leaf [y]<br/>    for j = 1 to t<br/>        cj[z] = cj + t[y]n[y] = t - 1for j = n[x] + 1 to i + 1<br/>    cj+1[x] = cj[x]ci+1[x] = zfor j = n[x] to i<br/>    keyj+1[x] = keyj[x]keyi[x] = keyt[y]n[x] = n[x] + 1</code>

Verwenden Sie Python, um den B-Tree-Einfügungsalgorithmus zu implementieren

<code>class BTreeNode:<br/>    def __init__(self, leaf=False):<br/>        self.leaf = leaf<br/>        self.keys = []<br/>        self.child = []<br/> <br/>class BTree:<br/>    def __init__(self, t):<br/>        self.root = BTreeNode(True)<br/>        self.t = t<br/> <br/>    def insert(self, k):<br/>        root = self.root<br/>        if len(root.keys) == (2 * self.t) - 1:<br/>            temp = BTreeNode()<br/>            self.root = temp<br/>            temp.child.insert(0, root)<br/>            self.split_child(temp, 0)<br/>            self.insert_non_full(temp, k)<br/>        else:<br/>            self.insert_non_full(root, k)<br/> <br/>    def insert_non_full(self, x, k):<br/>        i = len(x.keys) - 1<br/>        if x.leaf:<br/>            x.keys.append((None, None))<br/>            while i >= 0 and k[0] < x.keys[i][0]:<br/>                x.keys[i + 1] = x.keys[i]<br/>                i -= 1<br/>            x.keys[i + 1] = k<br/>        else:<br/>            while i >= 0 and k[0] < x.keys[i][0]:<br/>                i -= 1<br/>            i += 1<br/>            if len(x.child[i].keys) == (2 * self.t) - 1:<br/>                self.split_child(x, i)<br/>                if k[0] > x.keys[i][0]:<br/>                    i += 1<br/>            self.insert_non_full(x.child[i], k)<br/> <br/>    def split_child(self, x, i):<br/>        t = self.t<br/>        y = x.child[i]<br/>        z = BTreeNode(y.leaf)<br/>        x.child.insert(i + 1, z)<br/>        x.keys.insert(i, y.keys[t - 1])<br/>        z.keys = y.keys[t: (2 * t) - 1]<br/>        y.keys = y.keys[0: t - 1]<br/>        if not y.leaf:<br/>            z.child = y.child[t: 2 * t]<br/>            y.child = y.child[0: t - 1]<br/> <br/>    def print_tree(self, x, l=0):<br/>        print("Level ", l, " ", len(x.keys), end=":")<br/>        for i in x.keys:<br/>            print(i, end=" ")<br/>        print()<br/>        l += 1<br/>        if len(x.child) > 0:<br/>            for i in x.child:<br/>                self.print_tree(i, l)<br/> <br/>def main():<br/>    B = BTree(3)<br/> <br/>    for i in range(10):<br/>        B.insert((i, 2 * i))<br/> <br/>    B.print_tree(B.root)<br/> <br/>if __name__ == &#x27;__main__&#x27;:<br/>    main()</code>

Das obige ist der detaillierte Inhalt vonPrinzipdiagramm der Python-Implementierung des B-Tree-Einfügungsalgorithmus. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Dieser Artikel ist reproduziert unter:163.com. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen