Heim > Artikel > Technologie-Peripheriegeräte > Maschinelles Lernen |. PyTorch Kurzanleitung Teil 2
Nach dem vorherigen Artikel „PyTorch Concise Tutorial Teil 1“ lernen Sie weiterhin mehrschichtiges Perzeptron, Faltungs-Neuronales Netzwerk und LSTMNet.
Mehrschichtiges Perzeptron ist ein einfaches neuronales Netzwerk und eine wichtige Grundlage für tiefes Lernen. Es überwindet die Einschränkungen linearer Modelle, indem es dem Netzwerk eine oder mehrere verborgene Schichten hinzufügt. Das spezifische Diagramm lautet wie folgt:
import numpy as npimport torchfrom torch.autograd import Variablefrom torch import optimfrom data_util import load_mnistdef build_model(input_dim, output_dim):return torch.nn.Sequential(torch.nn.Linear(input_dim, 512, bias=False),torch.nn.ReLU(),torch.nn.Dropout(0.2),torch.nn.Linear(512, 512, bias=False),torch.nn.ReLU(),torch.nn.Dropout(0.2),torch.nn.Linear(512, output_dim, bias=False),)def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)n_examples, n_features = trX.size()n_classes = 10model = build_model(n_features, n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.Adam(model.parameters())batch_size = 100for i in range(100):cost = 0.num_batches = n_examples // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[start:end], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%"% (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()
(1) Der obige Code ähnelt dem Code eines einschichtigen neuronalen Netzwerks. Der Unterschied besteht darin, dass build_model ein neuronales Netzwerkmodell erstellt, das drei lineare Schichten und zwei ReLU-Aktivierungen enthält Funktionen:
(3) Was ist die Dropout-Schicht? Die Dropout-Schicht ist eine Technik, die in neuronalen Netzen verwendet wird, um eine Überanpassung zu verhindern. Während des Trainingsprozesses setzt die Dropout-Schicht die Ausgabe einiger Neuronen zufällig auf 0, dh sie „verwirft“. Der Zweck besteht darin, die gegenseitige Abhängigkeit zwischen Neuronen zu verringern und dadurch die Generalisierungsfähigkeit zu verbessern.
(4)print("Epoch %d, cost = %f, acc = %.2f%%" % (i + 1, cost / num_batches, 100. * np.mean(predY == teY))) Endlich , die aktuelle Trainingsrunde, der Verlustwert und der Acc werden wie folgt ausgegeben:
...Epoch 91, cost = 0.011129, acc = 98.45%Epoch 92, cost = 0.007644, acc = 98.58%Epoch 93, cost = 0.011872, acc = 98.61%Epoch 94, cost = 0.010658, acc = 98.58%Epoch 95, cost = 0.007274, acc = 98.54%Epoch 96, cost = 0.008183, acc = 98.43%Epoch 97, cost = 0.009999, acc = 98.33%Epoch 98, cost = 0.011613, acc = 98.36%Epoch 99, cost = 0.007391, acc = 98.51%Epoch 100, cost = 0.011122, acc = 98.59%
Es ist ersichtlich, dass die endgültige Datenklassifizierung eine höhere Genauigkeit aufweist als das einschichtige neuronale Netzwerk (98,59 % > 97,68). %).
2. Convolutional Neural Network
import numpy as npimport torchfrom torch.autograd import Variablefrom torch import optimfrom data_util import load_mnistclass ConvNet(torch.nn.Module):def __init__(self, output_dim):super(ConvNet, self).__init__()self.conv = torch.nn.Sequential()self.conv.add_module("conv_1", torch.nn.Conv2d(1, 10, kernel_size=5))self.conv.add_module("maxpool_1", torch.nn.MaxPool2d(kernel_size=2))self.conv.add_module("relu_1", torch.nn.ReLU())self.conv.add_module("conv_2", torch.nn.Conv2d(10, 20, kernel_size=5))self.conv.add_module("dropout_2", torch.nn.Dropout())self.conv.add_module("maxpool_2", torch.nn.MaxPool2d(kernel_size=2))self.conv.add_module("relu_2", torch.nn.ReLU())self.fc = torch.nn.Sequential()self.fc.add_module("fc1", torch.nn.Linear(320, 50))self.fc.add_module("relu_3", torch.nn.ReLU())self.fc.add_module("dropout_3", torch.nn.Dropout())self.fc.add_module("fc2", torch.nn.Linear(50, output_dim))def forward(self, x):x = self.conv.forward(x)x = x.view(-1, 320)return self.fc.forward(x)def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)trX = trX.reshape(-1, 1, 28, 28)teX = teX.reshape(-1, 1, 28, 28)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)n_examples = len(trX)n_classes = 10model = ConvNet(output_dim=n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)batch_size = 100for i in range(100):cost = 0.num_batches = n_examples // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[start:end], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%"% (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()(1) Der obige Code definiert eine Klasse namens ConvNet, die von der Torch.nn.Module-Klasse erbt und ein Faltungs-Neuronales Netzwerk in der __init__-Methode darstellt. Zwei Untermodule conv und fc sind definiert und repräsentieren die Faltungsschicht bzw. die vollständig verbundene Schicht. Im Conv-Submodul definieren wir zwei Faltungsschichten (torch.nn.Conv2d), zwei maximale Pooling-Schichten (torch.nn.MaxPool2d), zwei ReLU-Aktivierungsfunktionen (torch.nn.ReLU) und eine Dropout-Schicht (torch.nn. Ausfallen). Im fc-Untermodul sind zwei lineare Schichten (torch.nn.Linear), eine ReLU-Aktivierungsfunktion und eine Dropout-Schicht definiert.
Die Pooling-Schicht spielt eine wichtige Rolle in CNN und hat folgende Hauptzwecke: Punkt :
(3)print("Epoch %d, cost = %f, acc = %.2f%%" % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))最后打印当前训练的轮次,损失值和acc,上述的代码输出如下:
...Epoch 91, cost = 0.047302, acc = 99.22%Epoch 92, cost = 0.049026, acc = 99.22%Epoch 93, cost = 0.048953, acc = 99.13%Epoch 94, cost = 0.045235, acc = 99.12%Epoch 95, cost = 0.045136, acc = 99.14%Epoch 96, cost = 0.048240, acc = 99.02%Epoch 97, cost = 0.049063, acc = 99.21%Epoch 98, cost = 0.045373, acc = 99.23%Epoch 99, cost = 0.046127, acc = 99.12%Epoch 100, cost = 0.046864, acc = 99.10%
可以看出最后相同的数据分类,准确率比多层感知机要高(99.10% > 98.59%)。
LSTMNet是使用长短时记忆网络(Long Short-Term Memory, LSTM)构建的神经网络,核心思想是引入了一个名为"记忆单元"的结构,该结构可以在一定程度上保留长期依赖信息,LSTM中的每个单元包括一个输入门(input gate)、一个遗忘门(forget gate)和一个输出门(output gate),这些门的作用是控制信息在记忆单元中的流动,以便网络可以学习何时存储、更新或输出有用的信息。
import numpy as npimport torchfrom torch import optim, nnfrom data_util import load_mnistclass LSTMNet(torch.nn.Module):def __init__(self, input_dim, hidden_dim, output_dim):super(LSTMNet, self).__init__()self.hidden_dim = hidden_dimself.lstm = nn.LSTM(input_dim, hidden_dim)self.linear = nn.Linear(hidden_dim, output_dim, bias=False)def forward(self, x):batch_size = x.size()[1]h0 = torch.zeros([1, batch_size, self.hidden_dim])c0 = torch.zeros([1, batch_size, self.hidden_dim])fx, _ = self.lstm.forward(x, (h0, c0))return self.linear.forward(fx[-1])def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)train_size = len(trY)n_classes = 10seq_length = 28input_dim = 28hidden_dim = 128batch_size = 100epochs = 100trX = trX.reshape(-1, seq_length, input_dim)teX = teX.reshape(-1, seq_length, input_dim)trX = np.swapaxes(trX, 0, 1)teX = np.swapaxes(teX, 0, 1)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)model = LSTMNet(input_dim, hidden_dim, n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)for i in range(epochs):cost = 0.num_batches = train_size // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[:, start:end, :], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%" %(i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()
(1)以上这段代码通用的部分就不解释了,具体说LSTMNet类:
(2)print("第%d轮,损失值=%f,准确率=%.2f%%" % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))。打印出当前训练轮次的信息,其中包括损失值和准确率,以上代码的输出结果如下:
Epoch 91, cost = 0.000468, acc = 98.57%Epoch 92, cost = 0.000452, acc = 98.57%Epoch 93, cost = 0.000437, acc = 98.58%Epoch 94, cost = 0.000422, acc = 98.57%Epoch 95, cost = 0.000409, acc = 98.58%Epoch 96, cost = 0.000396, acc = 98.58%Epoch 97, cost = 0.000384, acc = 98.57%Epoch 98, cost = 0.000372, acc = 98.56%Epoch 99, cost = 0.000360, acc = 98.55%Epoch 100, cost = 0.000349, acc = 98.55%
两篇文章的from data_util import load_mnist的data_util.py代码如下:
import gzip import os import urllib.request as request from os import path import numpy as np DATASET_DIR = 'datasets/' MNIST_FILES = ["train-images-idx3-ubyte.gz", "train-labels-idx1-ubyte.gz", "t10k-images-idx3-ubyte.gz", "t10k-labels-idx1-ubyte.gz"] def download_file(url, local_path): dir_path = path.dirname(local_path) if not path.exists(dir_path): print("创建目录'%s' ..." % dir_path) os.makedirs(dir_path) print("从'%s'下载中 ..." % url) request.urlretrieve(url, local_path) def download_mnist(local_path): url_root = "http://yann.lecun.com/exdb/mnist/" for f_name in MNIST_FILES: f_path = os.path.join(local_path, f_name) if not path.exists(f_path): download_file(url_root + f_name, f_path) def one_hot(x, n): if type(x) == list: x = np.array(x) x = x.flatten() o_h = np.zeros((len(x), n)) o_h[np.arange(len(x)), x] = 1 return o_h def load_mnist(ntrain=60000, ntest=10000, notallow=True): data_dir = os.path.join(DATASET_DIR, 'mnist/') if not path.exists(data_dir): download_mnist(data_dir) else: # 检查所有文件 checks = [path.exists(os.path.join(data_dir, f)) for f in MNIST_FILES] if not np.all(checks): download_mnist(data_dir) with gzip.open(os.path.join(data_dir, 'train-images-idx3-ubyte.gz')) as fd: buf = fd.read() loaded = np.frombuffer(buf, dtype=np.uint8) trX = loaded[16:].reshape((60000, 28 * 28)).astype(float) with gzip.open(os.path.join(data_dir, 'train-labels-idx1-ubyte.gz')) as fd: buf = fd.read() loaded = np.frombuffer(buf, dtype=np.uint8) trY = loaded[8:].reshape((60000)) with gzip.open(os.path.join(data_dir, 't10k-images-idx3-ubyte.gz')) as fd: buf = fd.read() loaded = np.frombuffer(buf, dtype=np.uint8) teX = loaded[16:].reshape((10000, 28 * 28)).astype(float) with gzip.open(os.path.join(data_dir, 't10k-labels-idx1-ubyte.gz')) as fd: buf = fd.read() loaded = np.frombuffer(buf, dtype=np.uint8) teY = loaded[8:].reshape((10000)) trX /= 255. teX /= 255. trX = trX[:ntrain] trY = trY[:ntrain] teX = teX[:ntest] teY = teY[:ntest] if onehot: trY = one_hot(trY, 10) teY = one_hot(teY, 10) else: trY = np.asarray(trY) teY = np.asarray(teY) return trX, teX, trY, teY
Das obige ist der detaillierte Inhalt vonMaschinelles Lernen |. PyTorch Kurzanleitung Teil 2. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!