Heim >Technologie-Peripheriegeräte >KI >Wie künstliche Intelligenz das Design von Rechenzentren verändert
Da sich die weltweiten Ausgaben für KI-Systeme zwischen 2023 und 2026 voraussichtlich verdoppeln werden, ist es klar, dass die Rechenzentrumskapazität schnell zunehmen wird, um der Nachfrage gerecht zu werden.
Überraschenderweise sind jedoch viele Rechenzentrumsbetreiber im vergangenen Jahr bei neuen Projekten auf die Bremse getreten und haben ihre Investitionen gebremst, sodass die freie Kapazität in London im Zeitraum 2022–23 um 6,3 % zurückgegangen ist.
Was ist der Grund für diesen kontraintuitiven Trend? Um dies zu erklären, müssen wir einige der Probleme im Zusammenhang mit KI-Computing und der Infrastruktur, die es unterstützt, verstehen
Rechenzentren wurden schon immer auf CPU-Leistung ausgelegt, um die herkömmliche Rechenlast zu bewältigen. Allerdings erfordert KI-Computing ein GPU-gesteuertes Rack, das mehr Strom verbraucht, mehr Wärme ableitet und mehr Platz einnimmt als eine CPU mit der gleichen Kapazität.
In der Praxis bedeutet dies, dass KI-Rechenleistung häufig mehr Stromanschlüsse oder alternative Kühlsysteme erfordert sind erforderlich. Kann umformuliert werden als: Was dies im Wesentlichen bedeutet, ist, dass KI-Rechenleistung typischerweise mehr Stromanschlüsse oder alternative Kühlsysteme erfordert
Da es sich um eine eingebettete Infrastruktur handelt, ist sie in die Struktur des Rechenzentrumskomplexes integriert, auch wenn dies finanziell nicht völlig unmöglich ist. Die Ersatzkosten sind in der Regel extrem hoch.
In der Praxis müssen Betreiber festlegen, wie viel Platz in einem neuen Rechenzentrum für KI im Vergleich zu herkömmlichem Computing vorgesehen ist.
Dieser Fehler und eine übermäßige Investition in die KI könnten dazu führen, dass Rechenzentrumsbetreiber mit dauerhaft nicht ausgelasteten und unrentablen Kapazitäten konfrontiert werden.
Dieses Problem wird noch verschärft durch die Tatsache, dass der KI-Markt noch in den Kinderschuhen steckt, wobei Gartner behauptet, dass er sich derzeit auf dem Höhepunkt übererwarteter Erwartungen im Hype-Zyklus befindet. Aus diesem Grund entscheiden sich viele Betreiber dafür, in der Entwurfsphase zu zögern, anstatt sich vorzeitig auf den Anteil von KI-Computing in neuen Rechenzentrumsprojekten festzulegen.
Betreiber sind sich jedoch sehr bewusst, dass sie Marktanteile und Wettbewerbsvorteile verlieren, wenn sie nicht das Risiko einer Verzögerung von Investitionen eingehen. Dies ist jedoch eine große Herausforderung, wenn man bedenkt, dass viele der Grundlagen der Rechenzentrumsinfrastruktur in Echtzeit neu geschrieben werden KI-Computing Maximale Effizienz und Flexibilität. Dies erfordert einen neuen, ganzheitlichen Designansatz.
1. Beziehen Sie mehr Interessengruppen ein
Um die Betriebszeit über die gesamte Lebensdauer des Standorts zu gewährleisten und das Risiko kostspieliger Probleme zu verringern, müssen die Teams in der Planungsphase des Rechenzentrums gründlicher vorgehen.
Insbesondere in der Designphase sollte zu Beginn des Projekts der Input von mehr Teams und Fachwissen eingeholt werden. Neben der Suche nach Fachwissen in den Bereichen Energie und Kühlung sollten Designer frühzeitig mit Betriebs-, Verkabelungs- und Sicherheitsteams zusammenarbeiten, um potenzielle Engpässe oder Fehlerquellen zu verstehen.
2. Integrieren Sie KI in den Betrieb von Rechenzentren In diesem Bereich sollten sie ihre Fähigkeiten nutzen, um KI zur Verbesserung der betrieblichen Effizienz einzusetzen. Künstliche Intelligenz wird schon seit langem in Rechenzentren eingesetzt und ist mit dieser Technologie in der Lage, Arbeitsabläufe mit äußerst hoher Präzision und Qualität auszuführen. Beispielsweise kann KI bei Folgendem helfen:
Temperatur- und Feuchtigkeitsüberwachung SicherheitssystembetriebUm falsche wirtschaftliche Risiken zu vermeiden, sollten Betreiber den Kauf minderwertiger Materialien wie minderwertiger Kabel vermeiden. Diese Materialien sind störanfällig und müssen häufig ausgetauscht werden. Noch schlimmer ist, dass der Ausfall minderwertiger Materialien und Komponenten häufig zu Fabrikschließungen oder Produktionsverlangsamungen führt, was sich negativ auf die Rentabilität auswirkt
Obwohl Infrastrukturanforderungen für KI-Computing der Hauptgrund dafür sein können, dass Betreiber Investitionen verzögern, wird dies auf lange Sicht nicht der Fall sein
Mit zunehmender Marktunsicherheit werden Unternehmen zwischen traditionellem Computing und Computing mit künstlicher Intelligenz spalten , näher an ihre „goldenen Felder“ heran
In diesem Fall sollten Unternehmen sicherstellen, dass sie alle möglichen Vorteile im Website-Betrieb haben, um im Lern- und Wachstumsprozess erfolgreich zu sein
Das bedeutet, von Anfang an ganzheitlich zu gestalten und KI zu nutzen ist auf der Suche nach neuen Effizienzpotenzialen für seine Standorte und investiert in hochwertige Materialien, die den höheren Anforderungen des KI-Computing gerecht werden.
Das obige ist der detaillierte Inhalt vonWie künstliche Intelligenz das Design von Rechenzentren verändert. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!