


Mit einer theoretischen Grundlage können wir tiefgreifende Optimierungen durchführen.


- Verallgemeinert die Theorie von Oswald et al. und zeigt, wie Transformer intern konstruierte Ziele theoretisch optimieren können, indem sie auf Gradienten basierende Methoden aus der Regression zur Vorhersage verwenden nächstes Element der Sequenz.
- Experimentell rückentwickelte Transformer trainierten einfache Sequenzmodellierungsaufgaben und fanden starke Beweise dafür, dass ihr Vorwärtsdurchlauf einen zweistufigen Algorithmus implementiert: (i) Frühe Selbstaufmerksamkeitsschicht über Gruppierungs- und Kopiermarkierungen baut den internen Trainingsdatensatz auf Der interne Trainingsdatensatz wird implizit erstellt. Definieren Sie interne Zielfunktionen und (ii) optimieren Sie diese Ziele auf einer tieferen Ebene, um Vorhersagen zu generieren.
- Ähnlich wie bei LLM zeigen Experimente, dass auch einfache autoregressive Trainingsmodelle zu Kontextlernern werden können, und spontane Anpassungen sind entscheidend für die Verbesserung des Kontextlernens von LLM und können auch die Leistung in bestimmten Umgebungen verbessern.
- Inspiriert durch die Entdeckung, dass Aufmerksamkeitsschichten versuchen, die interne Zielfunktion implizit zu optimieren, stellt der Autor die Mesa-Schicht vor, eine neue Art von Aufmerksamkeitsschicht, die das Optimierungsproblem der kleinsten Quadrate effektiv lösen kann, anstatt nur einzelne Gradientenschritte durchzuführen Optimalität zu erreichen. Experimente zeigen, dass eine einzelne Mesa-Schicht Deep-Linear- und Softmax-Selbstaufmerksamkeitstransformatoren bei einfachen sequentiellen Aufgaben übertrifft und gleichzeitig eine bessere Interpretierbarkeit bietet.
- Nach vorläufigen Sprachmodellierungsexperimenten wurde festgestellt, dass das Ersetzen der Standard-Selbstaufmerksamkeitsschicht durch die Mesa-Schicht vielversprechende Ergebnisse erzielte, was beweist, dass diese Schicht über leistungsstarke kontextbezogene Lernfähigkeiten verfügt.
Wir können feststellen, dass es bei einfachen Gewichtseinstellungen leicht ist, durch grundlegende Optimierung herauszufinden, dass diese Ebene die hier untersuchte Aufgabe optimal lösen kann. Dieses Ergebnis zeigt den Vorteil fest codierter induktiver Vorspannungen zugunsten der Mesa-Optimierung.
Mit theoretischen Einblicken in den mehrschichtigen Fall analysieren Sie zunächst Deep Linear und Softmax und achten dabei nur auf Transformer. Die Autoren formatieren die Eingabe gemäß einer 4-Kanal-Struktur

Während der RevAlg-d-Ausdruck einen trainierten mehrschichtigen Transformer mit einer kleinen Anzahl freier Parameter erklärt, ist es schwierig, ihn als Mesa-Optimierungsalgorithmus zu interpretieren. Daher verwendeten die Autoren eine lineare Regressionsuntersuchungsanalyse (Alain & Bengio, 2017; Akyürek et al., 2023), um die Eigenschaften des hypothetischen Mesa-Optimierungsalgorithmus zu ermitteln.
Auf dem in Abbildung 3 gezeigten tiefen linearen Selbstaufmerksamkeitstransformator können wir sehen, dass beide Sonden linear dekodiert werden können und die Dekodierungsleistung mit zunehmender Sequenzlänge und Netzwerktiefe zunimmt. Daher entdeckt die Basisoptimierung einen Hybridalgorithmus, der Schicht für Schicht auf das ursprüngliche Mesa-Ziel Lt (W) absteigt und gleichzeitig die Bedingungszahl des Mesa-Optimierungsproblems verbessert. Dies führt zu einem raschen Rückgang des Mesa-Ziel-Lt (W). Es ist auch zu erkennen, dass sich die Leistung mit zunehmender Tiefe deutlich verbessert.
Man kann daher davon ausgehen, dass der schnelle Rückgang des autoregressiven Mesa-Ziels Lt (W) durch schrittweise (schichtübergreifende) Mesa-Optimierung auf besser vorverarbeiteten Daten erreicht wird.建 Abbildung 3: Mehrschichtiges Transformatortraining für Reverse-Engineering-erstellte Eingänge.
Das obige ist der detaillierte Inhalt vonMit einer theoretischen Grundlage können wir tiefgreifende Optimierungen durchführen.. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Große Sprachmodelle (LLMs) sind immer beliebter, wobei die Tool-Calling-Funktion ihre Fähigkeiten über die einfache Textgenerierung hinaus erweitert hat. Jetzt können LLMs komplexe Automatisierungsaufgaben wie dynamische UI -Erstellung und autonomes A erledigen

Kann ein Videospiel Angst erleichtern, Fokus aufbauen oder ein Kind mit ADHS unterstützen? Da die Herausforderungen im Gesundheitswesen weltweit steigen - insbesondere bei Jugendlichen - wenden sich Innovatoren einem unwahrscheinlichen Tool zu: Videospiele. Jetzt einer der größten Unterhaltungsindus der Welt

„Die Geschichte hat gezeigt, dass der technologische Fortschritt das Wirtschaftswachstum zwar nicht selbstverträglich macht, aber nicht eine gerechte Einkommensverteilung sicherstellt oder integrative menschliche Entwicklung fördert“, schreibt Rebeca Grynspan, Generalsekretärin von UNCTAD, in der Präambel.

Easy-Peasy, verwenden Sie generative KI als Ihren Verhandlungslehrer und Sparringspartner. Reden wir darüber. Diese Analyse eines innovativen KI -Durchbruch

Die TED2025 -Konferenz, die in Vancouver stattfand, beendete gestern, dem 11. April, ihre 36. Ausgabe. Es enthielt 80 Redner aus mehr als 60 Ländern, darunter Sam Altman, Eric Schmidt und Palmer Luckey. Teds Thema "Humanity Ranagined" wurde maßgeschneidert gemacht

Joseph Stiglitz ist der renommierte Ökonom und Empfänger des Nobelpreises in Wirtschaftswissenschaften im Jahr 2001. Stiglitz setzt, dass KI bestehende Ungleichheiten und konsolidierte Macht in den Händen einiger dominanter Unternehmen verschlimmern kann, was letztendlich die Wirtschaft untergräbt

Grafikdatenbanken: Datenmanagement durch Beziehungen revolutionieren Wenn sich die Daten erweitern und sich ihre Eigenschaften über verschiedene Bereiche hinweg entwickeln, entstehen Diagrammdatenbanken als transformative Lösungen für die Verwaltung miteinander verbundener Daten. Im Gegensatz zu traditioneller

LLM -Routing von großer Sprachmodell (LLM): Optimierung der Leistung durch intelligente Aufgabenverteilung Die sich schnell entwickelnde Landschaft von LLMs zeigt eine Vielzahl von Modellen mit jeweils einzigartigen Stärken und Schwächen. Einige zeichnen sich über kreative Inhalte aus


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver Mac
Visuelle Webentwicklungstools

Dreamweaver CS6
Visuelle Webentwicklungstools