Heim >Backend-Entwicklung >C++ >C-Programm zur Überprüfung, ob die Matrix singulär ist

C-Programm zur Überprüfung, ob die Matrix singulär ist

WBOY
WBOYnach vorne
2023-08-25 23:09:061484Durchsuche

C-Programm zur Überprüfung, ob die Matrix singulär ist

Bei einer gegebenen Matrixmatte[Zeile][Spalte] besteht unsere Aufgabe darin, durch eine Funktion zu prüfen, ob die gegebene Matrix singulär ist, und das Ergebnis anzuzeigen.

Eine singuläre Matrix ist eine Matrix, deren Determinante Null ist. Wenn die Determinante nicht Null ist, ist die Matrix nicht singulär.

Um also festzustellen, ob diese Matrix singulär oder nicht singulär ist, müssen wir zunächst die Determinante berechnen. Die Determinante der Matrix kann berechnet werden als -

$$M1[3][3]:=:begin{bmatrix}a & b & c d & e & f g & h & i end{bmatrix}$$

| m1|. = a(e*i - f*h) - b(d*i - f*g) + c(d*h - e*g)

Beispiel

Input-: mat[3][3]= { 4, 10, 1 },
   { 0, 2, 3 },
   { 1, 4, -3 }
Output-: matrix is non-singular
Input-: mat[3][3]= { 0, 0, 0 },
   { 10, 20, 30 },
   { 1, 4, -3 }
Output-: matrix is singular
Since the entire first row is 0 the determinant will be zero only

Algorithmus

Start
In function cofactor(int matrix[N][N], int matrix2[N][N], int p, int q, int n)
{
   Step 1-> Declare and initialize i = 0, j = 0, row, col
   Step 2-> Loop For row = 0 and row < n and row++
   Loop For col = 0 and col < n and col++
      If row != p && col != q then,
      Set  matrix2[i][j++] as matrix[row][col]
         If j == n &ndash; 1 then,
            Set j = 0
            Increment i by 1
         End for
      End for
In function int check_singular(int matrix[N][N], int n)
   Step 1-> Declare and initialize int D = 0;
   Step 2-> If n == 1 then,
      Return matrix[0][0]
   Step 3-> Declare matrix2[N][N], sign = 1
   Step 4-> Loop For f = 0 and f < n and f++
      Call function cofactor(matrix, matrix2, 0, f, n)
         Set D += sign * matrix[0][f] * check_singular(matrix2, n - 1)
         Set sign = -sign
      End loop
   Step 5-> Return D
In main()
   Step 1-> Declare and initialize a matrix[N][N]
   Step 2-> If call check_singular(matrix, N) returns non 0 value then,
      Print "Matrix is Singular "
   Step 3-> Else
      Print "Matrix is non-Singular "
Stop

Beispiel

Real- Zeitdemonstration

#include <stdio.h>
#define N 4
//to find the cofactors
int cofactor(int matrix[N][N], int matrix2[N][N], int p, int q, int n) {
   int i = 0, j = 0;
   int row, col;
   // Looping for each element of the matrix
   for (row = 0; row < n; row++) {
      for (col = 0; col < n; col++) {
         // Copying into temporary matrix only
         // those element which are not in given
         // row and column
         if (row != p && col != q) {
            matrix2[i][j++] = matrix[row][col];
            // Row is filled, so increase row
            // index and reset col index
            if (j == n - 1) {
               j = 0;
               i++;
            }
         }
      }
   }
   return 0;
}
/* Recursive function to check if matrix[][] is singular or not. */
int check_singular(int matrix[N][N], int n) {
   int D = 0; // Initialize result
   // Base case : if matrix contains single element
   if (n == 1)
   return matrix[0][0];
   int matrix2[N][N]; // To store cofactors
   int sign = 1; // To store sign multiplier
   // Iterate for each element of first row
   for (int f = 0; f < n; f++) {
      // Getting Cofactor of matrix[0][f]
      cofactor(matrix, matrix2, 0, f, n);
      D += sign * matrix[0][f] * check_singular(matrix2, n - 1);
      // terms are to be added with alternate sign
      sign = -sign;
   }
   return D;
}
// Driver program to test above functions
int main() {
   int matrix[N][N] = { { 4, 10, 1 },
   { 0, 2, 3 },
   { 1, 4, -3 } };
   if (check_singular(matrix, N))
      printf("Matrix is Singular</p><p>");
   else
      printf("Matrix is non-Singular</p><p>");
   return 0;
}

Ausgabe

Wenn Sie den obigen Code ausführen, wird die folgende Ausgabe generiert –

Matrix is non-Singular

Das obige ist der detaillierte Inhalt vonC-Programm zur Überprüfung, ob die Matrix singulär ist. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Dieser Artikel ist reproduziert unter:tutorialspoint.com. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen