Heim >Technologie-Peripheriegeräte >KI >Echtzeitschutz vor Gesichtsblockierungsangriffen im Web (basierend auf maschinellem Lernen)
Verhindern Sie Face-Blocking-Sperrfeuer, das heißt, dass eine große Anzahl von Sperrfeuern vorbeischwebt, aber blockieren Sie nicht die Charaktere auf dem Videobildschirm, sodass es so aussieht, als würden sie hinter den Charakteren schweben.
Maschinelles Lernen ist seit mehreren Jahren beliebt, aber viele Leute wissen nicht, dass diese Funktionen auch in Browsern ausgeführt werden können.
Dieser Artikel stellt den praktischen Optimierungsprozess von Videosperren vor Wo diese Lösung anwendbar ist, werden aufgelistet, in der Hoffnung, einige Ideen zu eröffnen.
mediapipe-Demo (https://google.github.io/mediapipe/) zeigt
Video hochladen
Server-Hintergrundberechnung zum Extrahieren der Inhalt im Hochformat des Videobildschirms, in SVG-Speicher umgewandelt
Während der Client das Video abspielt, wird das SVG vom Server heruntergeladen und mit dem Sperrfeuer kombiniert. Das Sperrfeuer wird nicht im Hochformatbereich angezeigt
Implementierungsprinzip
Verwendung von Open-Source-Bibliotheken für maschinelles Lernen, um Porträtumrisse aus Videomaterial in Echtzeit zu extrahieren, wie z. B. Körpersegmentierung (https://github.com/tensorflow/tfjs-models/blob/master/body-segmentation /README.md)Vorteile:
Einfach zu implementieren; erfordert nur einen Parameter des Video-Tags, keine Multi-End-Koordination erforderlichDiese Vorgehensweise optimierte schließlich die CPU-Auslastung auf etwa 5 % (2020 M1 Macbook) und erreichte einen produktionsbereiten Zustand.
Praktischer Abstimmungsprozess
Auch Genauigkeit Schlecht, das Gesicht ist schmal und es gibt offensichtliche Überlappungen zwischen den Rändern des Sperrfeuers und dem Gesicht des Charakters
BlazePose (https://github.com/tensorflow/tfjs-models/blob/master/pose-detection /src/ blazepose_mediapipe/README.md)
Hervorragende Genauigkeit und Bereitstellung von Körperpunktinformationen, aber schlechte Leistung
Beispiel für eine Rückgabedatenstruktur
[{score: 0.8,keypoints: [{x: 230, y: 220, score: 0.9, score: 0.99, name: "nose"},{x: 212, y: 190, score: 0.8, score: 0.91, name: "left_eye"},...],keypoints3D: [{x: 0.65, y: 0.11, z: 0.05, score: 0.99, name: "nose"},...],segmentation: {maskValueToLabel: (maskValue: number) => { return 'person' },mask: {toCanvasImageSource(): ...toImageData(): ...toTensor(): ...getUnderlyingType(): ...}}}]
MediaPipe SelfieSegmentation (https://github.com/tensorflow/tfjs -models /blob/master/body-segmentation/src/selfie_segmentation_mediapipe/README.md)
Die Genauigkeit ist ausgezeichnet (wie beim BlazePose-Modell), die CPU-Auslastung ist etwa 15 % geringer als beim BlazePose-Modell und die Leistung ist überlegen , aber die zurückgegebenen Daten stellen keine Gliedmaßenpunktinformationen bereit.
Beispiel für die Datenstruktur zurückgeben /body-segmentation/README.md #bodysegmentationdrawmask), ohne Optimierung beansprucht die CPU etwa 70 %
{maskValueToLabel: (maskValue: number) => { return 'person' },mask: {toCanvasImageSource(): ...toImageData(): ...toTensor(): ...getUnderlyingType(): ...}}
Reduzieren Sie die Extraktionsfrequenz und gleichen Sie das Leistungserlebnis aus
Implementierungsprinzip
const canvas = document.createElement('canvas')canvas.width = videoEl.videoWidthcanvas.height = videoEl.videoHeightasync function detect (): Promise<void> {const segmentation = await segmenter.segmentPeople(videoEl)const foregroundColor = { r: 0, g: 0, b: 0, a: 0 }const backgroundColor = { r: 0, g: 0, b: 0, a: 255 } const mask = await toBinaryMask(segmentation, foregroundColor, backgroundColor) await drawMask(canvas, canvas, mask, 1, 9)// 导出Mask图片,需要的是轮廓,图片质量设为最低handler(canvas.toDataURL('image/png', 0)) window.setTimeout(detect, 33)} detect().catch(console.error)
Schritte 2 und 3 entsprechen dem Füllen des Inhalts außerhalb des Porträtbereichs mit Schwarz (umgekehrtes Füllen von ImageBitmap), um mit CSS (Maskenbild) zusammenzuarbeiten, andernfalls ist er nur beim Sperren sichtbar schwebt in den Porträtbereich (genau das Gegenteil des Zieleffekts).
globalCompositeOperation MDN(https://developer.mozilla.org/zh-CN/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation)
此时,CPU 占用 33% 左右
我原先认为toDataURL是由浏览器内部实现的,无法再进行优化,现在只有优化toDataURL这个耗时操作了。
虽没有替换实现,但可使用 OffscreenCanvas (https://developer.mozilla.org/zh-CN/docs/Web/API/OffscreenCanvas)+ Worker,将耗时任务转移到 Worker 中去, 避免占用主线程,就不会影响用户体验了。
并且ImageBitmap实现了Transferable接口,可被转移所有权,跨 Worker 传递也没有性能损耗(https://hughfenghen.github.io/fe-basic-course/js-concurrent.html#%E4%B8%A4%E4%B8%AA%E6%96%B9%E6%B3%95%E5%AF%B9%E6%AF%94)。
// 前文 detect 的反向填充 ImageBitmap 也可以转移到 Worker 中// 用 OffscreenCanvas 实现, 此处略过 const reader = new FileReaderSync()// OffscreenCanvas 不支持 toDataURL,使用 convertToBlob 代替offsecreenCvsEl.convertToBlob({type: 'image/png',quality: 0}).then((blob) => {const dataURL = reader.readAsDataURL(blob)self.postMessage({msgType: 'mask',val: dataURL})}).catch(console.error)
可以看到两个耗时的操作消失了
此时,CPU 占用 15% 左右
继续分析,上图重新计算样式(紫色部分)耗时约 3ms
Demo 足够简单很容易推测到是这行代码导致的,发现 imgStr 大概 100kb 左右(视频分辨率 1280x720)。
danmakuContainer.style.webkitMaskImage = `url(${imgStr})
通过canvas缩小图片尺寸(360P甚至更低),再进行推理。
优化后,导出的 imgStr 大概 12kb,重新计算样式耗时约 0.5ms。
此时,CPU 占用 5% 左右
虽然提取 Mask 整个过程的 CPU 占用已优化到可喜程度。
当在画面没人的时候,或没有弹幕时候,可以停止计算,实现 0 CPU 占用。
无弹幕判断比较简单(比如 10s 内收超过两条弹幕则启动计算),也不在该 SDK 实现范围,略过
第一步中为了高性能,选择的模型只有ImageBitmap,并没有提供肢体点位信息,所以只能使用getImageData返回的像素点值来判断画面是否有人。
画面无人时,CPU 占用接近 0%
依赖包的提交较大,构建出的 bundle 体积:684.75 KiB / gzip: 125.83 KiB
所以,可以进行异步加载SDK,提升页面加载性能。
这个两步前端工程已经非常成熟了,略过细节。
注意事项
本期作者
刘俊
Leitender Entwicklungsingenieur bei Bilibili
Das obige ist der detaillierte Inhalt vonEchtzeitschutz vor Gesichtsblockierungsangriffen im Web (basierend auf maschinellem Lernen). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!