Heim  >  Artikel  >  Datenbank  >  Welche Fehlerbehebungen und Lösungen gibt es für BigKey in Redis?

Welche Fehlerbehebungen und Lösungen gibt es für BigKey in Redis?

王林
王林nach vorne
2023-05-31 15:59:501529Durchsuche

摘要

Redis是一款性能强劲的内存数据库,但是在使用过程中,我们可能会遇到Big Key问题,这个问题就是Redis中某个key的value过大,所以Big Key问题本质是Big Value问题,导致Redis的性能下降或者崩溃。

Big Key问题介绍

在Redis中,每个key都有一个对应的value,如果某个key的value过大,就会导致Redis的性能下降或者崩溃,比玄学更玄学,因为Redis需要将大key全部加载到内存中,这会占用大量的内存空间,会降低Redis的响应速度,这个问题被称为Big Key问题。不要小看这个问题,它可是能让你的Redis瞬间变成“乌龟”,由于Redis单线程的特性,操作Big Key的通常比较耗时,也就意味着阻塞Redis可能性越大,这样会造成客户端阻塞或者引起故障切换,有可能导致“慢查询”。

一般而言,下面这两种情况被称为大 key:

  • String 类型的 key 对应的value超过 10 MB。

  • list、set、hash、zset等集合类型,集合元素个数超过 5000个。

以上对 Big Key 的评判标准并不是唯一的,仅仅是一个大致的标准。需要根据具体的应用场景来判断是否是 Big Key,在实际业务开发中。如果某个 key 的操作导致请求响应时间变慢,那么可以将该 key 判定为 Big Key。

在Redis中,大key通常是由以下几种原因导致的

  • 对象序列化后的大小过大

  • 存储大量数据的容器,如set、list等

  • 大型数据结构,如bitmap、hyperloglog等

如果不及时处理这些大key,它们会逐渐消耗Redis服务器的内存资源,最终导致Redis崩溃。

Big Key问题排查

当出现Redis性能急剧下降的情况时,很可能是由于存在大key导致的。在排除大key问题时,可以考虑采取以下几种方法:

使用BIGKEYS命令

Redis自带的 BIGKEYS 命令可以查询当前Redis中所有key的信息,对整个数据库中的键值对大小情况进行统计分析,比如说,统计每种数据类型的键值对个数以及平均大小。此外,这个命令执行后,会输出每种数据类型中最大的 bigkey 的信息,对于 String 类型来说,会输出最大 bigkey 的字节长度,对于集合类型来说,会输出最大 bigkey 的元素个数

BIGKEYS命令会扫描整个数据库,这个命令本身会阻塞Redis,找出所有的大键,并将其以一个列表的形式返回给客户端。

命令格式如下:

$ redis-cli --bigkeys

返回示例如下:

# Scanning the entire keyspace to find biggest keys as well as
# average sizes per key type.  You can use -i 0.1 to sleep 0.1 sec
# per 100 SCAN commands (not usually needed).

[00.00%] Biggest string found so far 'a' with 3 bytes
[05.14%] Biggest list   found so far 'b' with 100004 items
[35.77%] Biggest string found so far 'c' with 6 bytes
[73.91%] Biggest hash   found so far 'd' with 3 fields

-------- summary -------

Sampled 506 keys in the keyspace!
Total key length in bytes is 3452 (avg len 6.82)

Biggest string found 'c' has 6 bytes
Biggest   list found 'b' has 100004 items
Biggest   hash found 'd' has 3 fields

504 strings with 1403 bytes (99.60% of keys, avg size 2.78)
1 lists with 100004 items (00.20% of keys, avg size 100004.00)
0 sets with 0 members (00.00% of keys, avg size 0.00)
1 hashs with 3 fields (00.20% of keys, avg size 3.00)
0 zsets with 0 members (00.00% of keys, avg size 0.00)

需要注意的是,由于BIGKEYS命令需要扫描整个数据库,所以它可能会对Redis实例造成一定的负担。在执行这个命令之前,请确保您的Redis实例有足够的资源来处理它,建议在从节点执行

Debug Object

如果我们找到了Big Key,就需要对其进行进一步的分析。我们可以使用命令debug object key查看某个key的详细信息,包括该key的value大小等。这时候你就可以“窥探”Redis的内部,看看到底是哪个key太大了。

当键存在时,Debug Object命令提供关于该键的信息,是一种调试命令。 当 key 不存在时,返回一个错误。

redis 127.0.0.1:6379> DEBUG OBJECT key
Value at:0xb6838d20 refcount:1 encoding:raw serializedlength:9 lru:283790 lru_seconds_idle:150

redis 127.0.0.1:6379> DEBUG OBJECT key
(error) ERR no such key

serializedlength表示key对应的value序列化之后的字节数

memory usage

在Redis4.0之前,只能通过DEBUG OBJECT命令估算key的内存使用(字段serializedlength),但DEBUG OBJECT命令是有误差的。

4.0版本及以上,我们可以使用memory usag命令。

memory usage命令使用非常简单,直接按memory usage key名字;如果当前key存在,则返回key的value实际使用内存估算值;如果key不存在,则返回nil。

127.0.0.1:6379> set k1 value1
OK
127.0.0.1:6379> memory usage k1    //这里k1 value占用57字节内存
(integer) 57
127.0.0.1:6379> memory usage aaa  // aaa键不存在,返回nil.
(nil)

对于除String类型之外的类型,memory usage命令采用抽样的方式,默认抽样5个元素,所以计算是近似值,我们也可以指定抽样的个数。

示例说明:生成一个100w个字段的hash键:hkey,每字段的value长度是从1~1024字节的随机值。

127.0.0.1:6379> hlen hkey    // hkey有100w个字段,每个字段的value长度介于1~1024个字节
(integer) 1000000
127.0.0.1:6379> MEMORY usage hkey   //默认SAMPLES为5,分析hkey键内存占用521588753字节
(integer) 521588753
127.0.0.1:6379> MEMORY usage hkey SAMPLES  1000 //指定SAMPLES为1000,分析hkey键内存占用617977753字节
(integer) 617977753
127.0.0.1:6379> MEMORY usage hkey SAMPLES  10000 //指定SAMPLES为10000,分析hkey键内存占用624950853字节
(integer) 624950853

要想获取key较精确的内存值,就指定更大抽样个数。但是抽样个数越大,占用cpu时间分片就越大。

redis-rdb-tools

redis-rdb-tools 是一个 python 的解析 rdb 文件的工具,在分析内存的时候,我们主要用它生成内存快照。你可以将 rdb 快照文件转换成 CSV 或者 JSON 文件并且可以将它导入到 MySQL 中生成报表进行分析。

使用 PYPI 安装

pip install rdbtools

生成内存快照

rdb -c memory dump.rdb > memory.csv

在生成的 CSV 文件中有以下几列:

  • database key在Redis的db

  • type key类型

  • key key值

  • size_in_bytes key的内存大小

  • encoding value的存储编码形式

  • num_elements key中的value的个数

  • len_largest_element key中的value的长度

可以在MySQL中新建表然后导入进行分析,然后可以直接通过SQL语句进行查询分析。

CREATE TABLE `memory` (
     `database` int(128) DEFAULT NULL,
     `type` varchar(128) DEFAULT NULL,
     `KEY` varchar(128),
     `size_in_bytes` bigint(20) DEFAULT NULL,
     `encoding` varchar(128) DEFAULT NULL,
     `num_elements` bigint(20) DEFAULT NULL,
     `len_largest_element` varchar(128) DEFAULT NULL,
     PRIMARY KEY (`KEY`)
 );

例子:查询内存占用最高的3个 key

mysql> SELECT * FROM memory ORDER BY size_in_bytes DESC LIMIT 3;
+----------+------+-----+---------------+-----------+--------------+---------------------+
| database | type | key | size_in_bytes | encoding  | num_elements | len_largest_element |
+----------+------+-----+---------------+-----------+--------------+---------------------+
|        0 | set  | k1  |        624550 | hashtable |        50000 | 10                  |
|        0 | set  | k2  |        420191 | hashtable |        46000 | 10                  |
|        0 | set  | k3  |        325465 | hashtable |        38000 | 10                  |
+----------+------+-----+---------------+-----------+--------------+---------------------+
3 rows in set (0.12 sec)

Big Key问题解决思路

当发现存在大key问题时,我们需要及时采取措施来解决这个问题。下面列出几种可行的解决思路:

分割大key

将Big Key拆分成多个小的key。这个方法比较简单,但是需要修改应用程序的代码。虽然有些费力,但将一个大蛋糕切成小蛋糕可以解决问题。

或者尝试将Big Key转换成Redis的数据结构。例如,可以使用哈希表、列表或集合等数据结构将“Big Key”进行转换。

对象压缩

若大key的大小源于对象序列化后的体积巨大,我们可思考运用压缩算法来缩小对象的尺寸。Redis自身支持多种压缩算法,例如LZF、Snappy等。

直接删除

如果你所用的Redis版本是4.0或更高版本,你可以使用unlink命令进行异步删除。4.0以下的版本 可以考虑使用 scan ,分批次删除。

无论采用哪种方法,都需要注意以下几点:

  • 避免使用过大的value。如果需要存储大量的数据,可以将其拆分成多个小的value。就像是吃饭一样,一口一口的吃,不要贪多嚼不烂。

  • 避免使用不必要的数据结构。如果只需要保存一个字符串,应该避免使用像Hash或List这样的数据结构。

  • 定期清理过期的key。当Redis中存在大量过期的key时,会导致Redis性能下降。就像是家里的垃圾,需要定期清理。

  • 对象压缩

Das obige ist der detaillierte Inhalt vonWelche Fehlerbehebungen und Lösungen gibt es für BigKey in Redis?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Dieser Artikel ist reproduziert unter:yisu.com. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen