Heim >Backend-Entwicklung >Python-Tutorial >Analysieren Sie Beispiele für vier Hauptdatentypen in Python

Analysieren Sie Beispiele für vier Hauptdatentypen in Python

WBOY
WBOYnach vorne
2023-05-09 21:16:181870Durchsuche

Grundlegende Datentypen

Numerischer Typ

Daten in Python sind alle Objekte, wie das bekannte Ganzzahlobjekt int, der Gleitkommatyp float mit doppelter Genauigkeit und das logische Objekt bool, die alle einzelne Elemente sind. Nennen Sie zwei Beispiele.

Fügen Sie 0x zum Präfix hinzu, um eine hexadezimale Ganzzahl zu erstellen: 0x,创建一个十六进制的整数:

0xa5 # 等于十进制的 165

使用 e 创建科学计数法表示的浮点数:

1.05e3 # 1050.0

容器型

可容纳多个元素的容器对象,常用的比如:list 列表对象、 tuple 元组对象、dict 字典对象、set 集合对象。Python 定义这些类型的变量,语法非常简洁。

举例如下。

使用一对中括号 [],创建一个 list 型变量:

lst = [1,3,5] # list 变量

示意图看出,右侧容器为开环的,意味着可以向容器中增加和删除元素:

Analysieren Sie Beispiele für vier Hauptdatentypen in Python

使用一对括号 (),创建一个 tuple 型对象:

tup = (1,3,5) # tuple 变量

示意图看出,右侧容器为闭合的,意味着一旦创建元组后,便不能再向容器中增删元素:

Analysieren Sie Beispiele für vier Hauptdatentypen in Python

但需要注意,含单个元素的元组后面必须保留一个逗号,才被解释为元组。

tup = (1,) # 必须保留逗号

否则会被认为元素本身:

In [14]: tup=(1)
   ...: print(type(tup)) 
<class></class>

使用一对花括号 {} 另使用冒号 :,创建一个 dict 对象:

dic = {'a':1, 'b':3, 'c':5} # dict变量

字典是一个哈希表,下面的示意图形象的表达出字典的 “形”。

Analysieren Sie Beispiele für vier Hauptdatentypen in Python

仅使用一对花括号 {},创建一个 set 对象:

s = {1,3,5} # 集合变量

Python 的容器类型,list、dict、tuple、set 等能方便地实现强大的功能,下面给出几个案例。

1. 去最求平均

去掉列表中的一个最小值和一个最大值后,计算剩余元素的平均值。

def score_mean(lst):
   lst.sort()
   lst2=lst[1:-1]
   return round((sum(lst2)/len(lst2)),1)

lst=[9.1, 9.0,8.1, 9.7, 19,8.2, 8.6,9.8]
score_mean(lst) # 9.1

代码执行过程,动画演示:

Analysieren Sie Beispiele für vier Hauptdatentypen in Python

2. 打印 99 乘法表

打印出如下格式的乘法表:

1*1=1
1*2=2   2*2=4
1*3=3   2*3=6   3*3=9
1*4=4   2*4=8   3*4=12  4*4=16
1*5=5   2*5=10  3*5=15  4*5=20  5*5=25
1*6=6   2*6=12  3*6=18  4*6=24  5*6=30  6*6=36
1*7=7   2*7=14  3*7=21  4*7=28  5*7=35  6*7=42  7*7=49
1*8=8   2*8=16  3*8=24  4*8=32  5*8=40  6*8=48  7*8=56  8*8=64
1*9=9   2*9=18  3*9=27  4*9=36  5*9=45  6*9=54  7*9=63  8*9=72  9*9=81

一共有 10 行,第 i 行的第 j 列等于:j*i,其中:

  • i 取值范围:1

  • j 取值范围:1

根据“例子分析”的语言描述,转化为如下代码:

In [13]: for i in range(1,10):
   ...:     for j in range(1,i+1):
   ...:         print('%d*%d=%d'%(j,i,j*i),end='\t')
   ...:     print()

3. 样本抽样

使用 sample 抽样,如下例子从 100 个样本中随机抽样 10 个。

from random import randint,sample
lst = [randint(0,50) for _ in range(100)]
print(lst[:5])# [38, 19, 11, 3, 6]
lst_sample = sample(lst,10)
print(lst_sample) # [33, 40, 35, 49, 24, 15, 48, 29, 37, 24]

字符串

注意 Python 中没有像 C++ 表示的字符类型(char),所有的字符或串都被统一为 str 对象。如单个字符 c

In [1]: '  I love python\t\n  '.strip()
Out[1]: 'I love python'
Verwenden Sie e, um eine Gleitkommazahl in wissenschaftlicher Notation zu erstellen:

In [2]: 'i love python'.replace(' ','_')
Out[2]: 'i_love_python'
Containertyp

Ein Containerobjekt, das mehrere Elemente enthalten kann, sind: Listenobjekt, Tupelobjekt, Diktatwörterbuchobjekt und Set-Sammlungsobjekt. Python definiert diese Art von Variablen mit einer sehr prägnanten Syntax.

Beispiele sind wie folgt.

Verwenden Sie ein Paar eckiger Klammern [], um eine Listenvariable zu erstellen:

In [3]: '_'.join(['book', 'store','count'])
Out[3]: 'book_store_count'
Das Diagramm zeigt, dass der Container auf der rechten Seite ein Open-Loop-Container ist, was bedeutet, dass Elemente hinzugefügt und gelöscht werden können der Container:

Instanzanalyse der vier Hauptdatentypen von Python

Verwenden Sie ein Klammerpaar(), um ein Tupelobjekt zu erstellen:

In [4]: 'i love python'.title()
Out[4]: 'I Love Python'
Das Diagramm zeigt, dass der Container auf der rechten Seite geschlossen ist, was bedeutet, dass nach der Erstellung des Tupels keine Elemente mehr hinzugefügt werden können oder in den Container gelöscht:

Instanzanalyse der vier Hauptdatentypen von Python🎜🎜Es ist jedoch zu beachten, dass nach dem Tupel ein Komma stehen muss, das ein einzelnes Element enthält, um als Tupel interpretiert zu werden. 🎜
In [5]: 'i love python'.find('python')
Out[5]: 7
🎜Ansonsten wird es als das Element selbst betrachtet: 🎜
def is_rotation(s1: str, s2: str) -> bool:
   if s1 is None or s2 is None:
       return False
   if len(s1) != len(s2):
       return False

   def is_substring(s1: str, s2: str) -> bool:
       return s1 in s2
   return is_substring(s1, s2 + s2)
🎜Verwenden Sie ein Paar geschweifte Klammern {} und einen Doppelpunkt :, um ein Diktatobjekt zu erstellen: 🎜
r = is_rotation('stringbook', 'bookstring')
print(r)  # True

r = is_rotation('greatman', 'maneatgr')
print(r)  # False
🎜 Ein Wörterbuch ist eine Hash-Tabelle. Das folgende schematische Diagramm drückt anschaulich die „Form“ des Wörterbuchs aus. 🎜🎜Instanzanalyse der vier Hauptdatentypen von Python🎜🎜Verwenden Sie nur einen Paar geschweifte Klammern {} erstellen ein Set-Objekt: 🎜
import re
pat = re.compile(r'\w{6,20}') # 这是错误的,因为 \w 通配符匹配的是字母,数字和下划线,题目要求不能含有下划线
# 使用最稳的方法:\da-zA-Z 满足“密码只包含英文字母和数字”
# \d匹配数字 0-9
# a-z 匹配所有小写字符;A-Z 匹配所有大写字符
pat = re.compile(r'[\da-zA-Z]{6,20}')
🎜Pythons Containertypen, Liste, Diktat, Tupel, Menge usw. können problemlos leistungsstarke Funktionen implementieren. 🎜🎜1. Ermitteln Sie den Durchschnitt🎜🎜Nachdem Sie einen Mindestwert und einen Maximalwert aus der Liste entfernt haben, berechnen Sie den Durchschnitt der verbleibenden Elemente. 🎜
pat.fullmatch('qaz12') # 返回 None,长度小于 6
pat.fullmatch('qaz12wsxedcrfvtgb67890942234343434') # None 长度大于 22
pat.fullmatch('qaz_231') # None 含有下划线
🎜Codeausführungsprozess, animierte Demonstration: 🎜🎜Instanzen der vier Hauptdaten von Python Typenanalyse🎜🎜2. Drucken Sie die 99-Multiplikationstabelle🎜🎜Drucken Sie die Multiplikationstabelle im folgenden Format aus: 🎜
In [20]: pat.fullmatch('n0passw0Rd')
Out[20]: <re.match></re.match>
🎜Es gibt insgesamt 10 Zeilen und die j-te Spalte der i- Die Zeile ist gleich: j *i, wobei: 🎜
  • 🎜i Wertebereich: 1🎜
  • 🎜j Wertebereich: 1🎜
🎜Gemäß der Sprachbeschreibung von „Beispielanalyse“. ", wird es in den folgenden Code umgewandelt: 🎜
class Dog(object):
   pass
🎜 3. Stichprobenentnahme🎜🎜Verwenden Sie Stichprobenentnahme. Im folgenden Beispiel werden zufällig 10 Stichproben aus 100 Stichproben entnommen. 🎜
wangwang = Dog()
🎜String🎜🎜Beachten Sie, dass es in Python keinen Zeichentyp (char) wie in C++ gibt, alle Zeichen oder Zeichenfolgen werden in str-Objekten zusammengefasst. Beispielsweise ist der Typ eines einzelnen Zeichens c ebenfalls str. Der Typ 🎜🎜str wird häufig verwendet. Lassen Sie uns zunächst 5 häufig verwendete Methoden auflisten. 🎜🎜strip wird verwendet, um Leerzeichen vor und nach einer Zeichenfolge zu entfernen: 🎜
In [26]: wangwang.__dir__()
Out[26]:
['__module__',
'__dict__',
'__weakref__',
'__doc__',
'__repr__',
'__hash__',
'__str__',
'__getattribute__',
'__setattr__',
'__delattr__',
'__lt__',
'__le__',
'__eq__',
'__ne__',
'__gt__',
'__ge__',
'__init__',
'__new__',
'__reduce_ex__',
'__reduce__',
'__subclasshook__',
'__init_subclass__',
'__format__',
'__sizeof__',
'__dir__',
'__class__']
🎜replace wird verwendet, um Zeichenfolgen zu ersetzen: 🎜
def __init__(self, name, dtype):
    self.name = name
    self.dtype = dtype
🎜join wird verwendet, um Zeichenfolgen zusammenzuführen: 🎜
wangwang = Dog('wangwang','cute_type')
🎜title wird verwendet, um das erste Zeichen eines Wortes groß zu schreiben: 🎜
def shout(self):
   print('I\'m %s, type: %s' % (self.name, self.dtype))
🎜find wird verwendet. Gibt den Startpositionsindex der übereinstimmenden Zeichenfolge zurück: 🎜
In [40]: class Dog(object):
   ...:     def __init__(self,name,dtype):
   ...:         self.name=name
   ...:         self.dtype=dtype
   ...:     def shout(self):
   ...:         print('I\'m %s, type: %s' % (self.name, self.dtype))

In [41]: wangwang = Dog('wangwang','cute_type')

In [42]: wangwang.name
Out[42]: 'wangwang'

In [43]: wangwang.dtype
Out[43]: 'cute_type'

In [44]: wangwang.shout()
I'm wangwang, type: cute_type
🎜Bestimmen Sie als Beispiel für die Anwendung von Zeichenfolgen, ob str1 von str2 gedreht wird. 🎜🎜Das String-Stringbook wird gedreht, um einen Bookstring zu erhalten. Schreiben Sie einen Code, um zu überprüfen, ob str1 nach der Rotation str2 ist. 🎜🎜In Beurteilung umwandeln: ob str1 ein Teilstring von str2+str2 ist. 🎜

下面函数原型中,注明了每个参数的类型、返回值的类型,增强代码的可读性和可维护性。

def is_rotation(s1: str, s2: str) -> bool:
   if s1 is None or s2 is None:
       return False
   if len(s1) != len(s2):
       return False

   def is_substring(s1: str, s2: str) -> bool:
       return s1 in s2
   return is_substring(s1, s2 + s2)

测试函数 is_rotation:

r = is_rotation('stringbook', 'bookstring')
print(r)  # True

r = is_rotation('greatman', 'maneatgr')
print(r)  # False

代码执行过程,动画演示:

55555

字符串的匹配操作除了使用 str 封装的方法外,Python 的 re 正则模块功能更加强大,写法更为简便,广泛适用于爬虫、数据分析等。

下面这个案例实现:密码安全检查,使用正则表达式非常容易实现。

密码安全要求:

  • 要求密码为 6 到 20 位;

  • 密码只包含英文字母和数字。

import re
pat = re.compile(r'\w{6,20}') # 这是错误的,因为 \w 通配符匹配的是字母,数字和下划线,题目要求不能含有下划线
# 使用最稳的方法:\da-zA-Z 满足“密码只包含英文字母和数字”
# \d匹配数字 0-9
# a-z 匹配所有小写字符;A-Z 匹配所有大写字符
pat = re.compile(r'[\da-zA-Z]{6,20}')

选用最保险的 fullmatch 方法,查看是否整个字符串都匹配。

以下测试例子都返回 None,原因都在解释里。

pat.fullmatch('qaz12') # 返回 None,长度小于 6
pat.fullmatch('qaz12wsxedcrfvtgb67890942234343434') # None 长度大于 22
pat.fullmatch('qaz_231') # None 含有下划线

下面这个字符串 n0passw0Rd 完全符合:

In [20]: pat.fullmatch('n0passw0Rd')
Out[20]: <re.match></re.match>

自定义类型

Python 使用关键字 class 定制自己的类,self 表示类实例对象本身。

一个自定义类内包括属性、方法,其中有些方法是自带的。

类(对象):

class Dog(object):
   pass

以上定义一个 Dog 对象,它继承于根类 object,pass 表示没有自定义任何属性和方法。

下面创建一个 Dog 类型的实例:

wangwang = Dog()

Dog 类现在没有定义任何方法,但是刚才说了,它会有自带的方法,使用 dir() 查看这些自带方法:

In [26]: wangwang.__dir__()
Out[26]:
['__module__',
'__dict__',
'__weakref__',
'__doc__',
'__repr__',
'__hash__',
'__str__',
'__getattribute__',
'__setattr__',
'__delattr__',
'__lt__',
'__le__',
'__eq__',
'__ne__',
'__gt__',
'__ge__',
'__init__',
'__new__',
'__reduce_ex__',
'__reduce__',
'__subclasshook__',
'__init_subclass__',
'__format__',
'__sizeof__',
'__dir__',
'__class__']

有些地方称以上方法为魔法方法,它们与创建类时自定义个性化行为有关。比如:

  • init 方法能定义一个带参数的类;

  • new 方法自定义实例化类的行为;

  • getattribute 方法自定义读取属性的行为;

  • setattr 自定义赋值与修改属性时的行为。

类的属性:

def __init__(self, name, dtype):
    self.name = name
    self.dtype = dtype

通过 init,定义 Dog 对象的两个属性:name、dtype。

类的实例:

wangwang = Dog('wangwang','cute_type')

wangwangDog 类的实例。

类的方法:

def shout(self):
   print('I\'m %s, type: %s' % (self.name, self.dtype))

注意:

  • 自定义方法的第一个参数必须是 self,它指向实例本身,如 Dog 类型的实例 dog;

  • 引用属性时,必须前面添加 self,比如 self.name 等。

总结以上代码:

In [40]: class Dog(object):
   ...:     def __init__(self,name,dtype):
   ...:         self.name=name
   ...:         self.dtype=dtype
   ...:     def shout(self):
   ...:         print('I\'m %s, type: %s' % (self.name, self.dtype))

In [41]: wangwang = Dog('wangwang','cute_type')

In [42]: wangwang.name
Out[42]: 'wangwang'

In [43]: wangwang.dtype
Out[43]: 'cute_type'

In [44]: wangwang.shout()
I'm wangwang, type: cute_type

看到创建的两个属性和一个方法都被暴露在外面,可被 wangwang 调用。这样的话,这些属性就会被任意修改:

In [49]: wangwang.name='wrong_name'
   
In [50]: wangwang.name
Out[50]: 'wrong_name'

如果想避免属性 name 被修改,可以将它变为私有变量。改动方法:属性前加 2 个 _ 后,变为私有属性。如:

In [51]: class Dog(object):
   ...:     def __init__(self,name,dtype):
   ...:         self.__name=name
   ...:         self.__dtype=dtype
   ...:     def shout(self):
   ...:         print('I\'m %s, type: %s' % (self.name, self.dtype))

同理,方法前加 2 个 _ 后,方法变为“私有方法”,只能在 Dog 类内被共享使用。

但是这样改动后,属性 name 不能被访问了,也就无法得知 wangwang 的名字叫啥。不过,这个问题有一种简单的解决方法,直接新定义一个方法就行:

def get_name(self):
   return self.__name

综合代码:

In [52]: class Dog(object):
   ...:     def __init__(self,name,dtype):
   ...:         self.__name=name
   ...:         self.__dtype=dtype
   ...:     def shout(self):
   ...:         print('I\'m %s, type: %s' % (self.name, self.dtype))
   ...:     def get_name(self):
   ...:         return self.__name
   ...:

In [53]: wangwang = Dog('wangwang','cute_type')

In [54]: wangwang.get_name()
Out[54]: 'wangwang'

但是,通过此机制,改变属性的可读性或可写性,怎么看都不太优雅!因为无形中增加一些冗余的方法,如 get_name。

下面,通过另一个例子,解释如何更优雅地改变某个属性为只读或只写。

自定义一个最精简的 Book 类,它继承于系统的根类 object:

class Book(object):
   def __init__(self,name,sale):
       self.__name = name
       self.__sale = sale

使用 Python 自带的 property 类,就会优雅地将 name 变为只读的。

   @property
   def name(self):
       return self.__name

使用 @property 装饰后 name 变为属性,意味着 .name 就会返回这本书的名字,而不是通过 .name() 这种函数调用的方法。这样变为真正的属性后,可读性更好。

In [101]: class Book(object):
    ...:     def __init__(self,name,sale):
    ...:         self.__name = name
    ...:         self.__sale = sale
    ...:     @property
    ...:     def name(self):
    ...:         return self.__name

In [102]: a_book = Book('magic_book',100000)

In [103]: a_book.name
Out[103]: 'magic_book'

property 是 Python 自带的类,前三个参数都是函数类型。更加详细的讨论放在后面讨论装饰器时再展开。

In [104]: help(property)
Help on class property in module builtins:

class property(object)
|  property(fget=None, fset=None, fdel=None, doc=None)

如果使 name 既可读又可写,就再增加一个装饰器 @name.setter。

In [105]: class Book(object):
    ...:     def __init__(self,name,sale):
    ...:         self.__name = name
    ...:         self.__sale = sale
    ...:     @property
    ...:     def name(self):
    ...:         return self.__name
    ...:     @name.setter
    ...:     def name(self,new_name):
    ...:         self.__name = new_name

In [106]: a_book = Book('magic_book',100000)

In [107]: a_book.name = 'magic_book_2.0'

In [108]: a_book.name
Out[108]: 'magic_book_2.0'

注意这种装饰器写法:name.setter,name 已经被包装为 property 实例,调用实例上的 setter 函数再包装 name 后就会可写。对于 Python 入门者,可以暂时不用太纠结这部分理论,使用 Python 一段时间后,再回过头来自然就会理解。

Das obige ist der detaillierte Inhalt vonAnalysieren Sie Beispiele für vier Hauptdatentypen in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Dieser Artikel ist reproduziert unter:yisu.com. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen