Heim >Technologie-Peripheriegeräte >KI >Ein Artikel über das Verkehrszeichenerkennungssystem beim autonomen Fahren

Ein Artikel über das Verkehrszeichenerkennungssystem beim autonomen Fahren

王林
王林nach vorne
2023-04-12 12:34:024707Durchsuche

Was ist ein Verkehrszeichenerkennungssystem?

Das Verkehrszeichenerkennungssystem des Autosicherheitssystems, dessen englische Übersetzung: Traffic Sign Recognition, kurz TSR, lautet, nutzt die Frontkamera in Kombination mit dem Modus, um gängige Verkehrszeichen (Geschwindigkeitsbegrenzung, Parken, Kehrtwende) zu erkennen , usw.). Diese Funktion macht den Fahrer auf vorausliegende Verkehrszeichen aufmerksam, damit er diese befolgen kann. Die TSR-Funktion verbessert die Sicherheit, indem sie die Wahrscheinlichkeit verringert, dass Fahrer Verkehrsregeln wie Stoppschilder nicht befolgen und illegales Linksabbiegen oder andere unbeabsichtigte Verkehrsverstöße vermeiden. Diese Systeme erfordern flexible Softwareplattformen zur Verbesserung der Erkennungsalgorithmen und zur Anpassung an Verkehrszeichen in verschiedenen Bereichen.

Prinzip der Verkehrszeichenerkennung

Die Verkehrszeichenerkennung, auch bekannt als TSR (Traffic Sign Recognition), bezieht sich auf die Fähigkeit, Verkehrszeicheninformationen zu sammeln und zu identifizieren, die während der Fahrt des Fahrzeugs angezeigt werden, und rechtzeitig Anweisungen oder Warnungen bereitzustellen an den Fahrer weiterzuleiten oder das Fahrzeug direkt zu steuern, um einen reibungslosen Verkehr zu gewährleisten und Unfälle zu verhindern. Wenn das Fahrzeug in Fahrzeugen, die mit sicherheitsunterstützten Fahrsystemen ausgestattet sind, über ein effizientes TSR-System verfügt, kann es den Fahrern zeitnah zuverlässige Verkehrszeicheninformationen liefern und so die Fahrsicherheit und den Fahrkomfort effektiv verbessern.

Im Folgenden wird eine typische Methode zur Erkennung von Verkehrszeichen vorgestellt.

TSR basiert auf den Eigenschaften von Objekten, die vom menschlichen visuellen System erkannt werden. Sein Erkennungsprinzip besteht darin, die reichhaltigen Farbinformationen und festen Forminformationen von Verkehrsschildern zur Merkmalserkennung zu nutzen. Konkret kann der Anerkennungsprozess in zwei Schritte unterteilt werden: „Trennung“ und „Anerkennung“. Bei der Trennung geht es darum, mögliche Ziele in den erfassten Bildern zu finden und eine entsprechende Vorverarbeitung durchzuführen, gefolgt von der Verkehrszeichenerkennung, einschließlich Merkmalsextraktion und -klassifizierung, und schließlich der weiteren Bestimmung der Authentizität des Ziels.

Ein Artikel über das Verkehrszeichenerkennungssystem beim autonomen Fahren

1. Verkehrszeichentrennung

Die Verkehrszeichentrennung erfordert tatsächlich die schnelle Ermittlung von Interessenbereichen, bei denen es sich möglicherweise um Verkehrszeichen handelt, aus komplexen Szenenbildern. Anschließend wird die Mustererkennungsmethode verwendet, um den interessierenden Bereich weiter zu identifizieren und seinen spezifischen Standort zu lokalisieren. Da Verkehrszeichen als Indikatoren, Erinnerungen und Warnungen fungieren, sind sie so gestaltet, dass sie ins Auge fallen, leuchtende Farben, prägnante Grafiken und eine klare Bedeutung haben. Daher werden interessierende Regionen normalerweise anhand ihrer Farbe und Form kartiert.

Zu den derzeit häufig verwendeten Farbräumen bei der Verkehrszeichenerkennung gehören RGB, HIS und CIE. Als die drei in der Bildverarbeitung häufig verwendeten Primärfarben ist RGB die Grundlage für die Konstruktion verschiedener anderer Farbdarstellungsmethoden Verwandelt.

Ein Artikel über das Verkehrszeichenerkennungssystem beim autonomen Fahren

Wir wissen, dass die meisten Verkehrszeichen relativ einfarbig und fest sind. Beispielsweise weisen rote Schilder im Allgemeinen auf Verbote hin, blaue Schilder weisen im Allgemeinen auf Anweisungen hin und gelbe Schilder weisen im Allgemeinen auf Warnungen hin. Die drei Grundfarben von RGB sind Rot, Gelb und Blau werden hier durch identifizierende Übereinstimmungen dargestellt.

Da der Farbraum auch mehr Informationen wie Sättigung enthält, verwenden Forscher zur besseren Unterscheidung von Farb- und Helligkeitsinformationen das für menschliche visuelle Merkmale geeignete Farbmodell HSI, um die Verkehrszeichenerkennung zu verarbeiten. S steht für die Farbtiefe und I für den Helligkeits- und Dunkelheitsgrad. Das größte Merkmal von HSI ist die minimale Korrelation zwischen H, S und I. Jedes Farbbild im HSI-Raum entspricht einem relativ konsistenten Farbton H.

Ein Artikel über das Verkehrszeichenerkennungssystem beim autonomen Fahren

2. Verkehrszeichenerkennung

Nachdem der Interessenbereich der Verkehrszeicheninformationen in der Testfahrumgebung segmentiert wurde, muss ein bestimmter Algorithmus verwendet werden, um ihn zu identifizieren, um zu bestimmen, welches spezifische Verkehrszeichen es gibt Zu den allgemeinen Unterscheidungsmethoden gehören Vorlagenvergleichsmethoden, auf Clusteranalysen basierende Methoden, auf neuronalen Netzwerken basierende Methoden und auf Support-Vektor-Maschinen basierende Methoden.

(1) Basierend auf der Template-Matching-Methode

(2) Basierend auf der Cluster-Analyse-Methode

(3) Auf einem neuronalen Netzwerk basierende Methode

(4) Support-Vector-Machine-Methode

Support-Vector-Machine ist A Die typische Feedforward-Neuronale-Netzwerk-Methode wird zur Lösung von Musterklassifizierungs- und nichtlinearen Problemen verwendet. Ihre Hauptidee besteht darin, eine optimale Entscheidungshyperebene zu erstellen, um den Abstand zwischen den beiden Arten von Stichproben zu maximieren, die der Ebene auf beiden Seiten der Ebene am nächsten liegen, und so eine bessere Verallgemeinerung zu ermöglichen Fähigkeit zur Klassifizierung. Bei nichtlinearen trennbaren Musterklassifizierungsproblemen muss das verantwortliche Musterklassifizierungsproblem nichtlinear in einen hochdimensionalen Merkmalsraum projiziert werden. Daher kann der ursprüngliche Musterraum zu einem werden, solange die Transformation nichtlinear ist und die Merkmalsraumdimension hoch genug ist neu Ein hochdimensionaler Merkmalsraum, in dem Muster mit hoher Wahrscheinlichkeit linear trennbar werden. Der Transformationsprozess erfordert die Generierung einer Kernelfunktion für die Faltung. Die entsprechende typische Kernelfunktion wird wie folgt ausgedrückt:

Gaussian-Funktion: Bild; wird für den Klassifikator für radiale Mengen verwendet Netzwerk.

Einige spezifische Anwendungsszenarien von TSR

Denn die Komplexität der Straßenverkehrsbedingungen kann dazu führen, dass sich Verkehrszeichen verfärben, ihre Farbe und Form ändern und die Behinderung durch Bäume und Gebäude dazu führen kann, dass sie nicht rechtzeitig erkannt werden Gleichzeitig können Faktoren wie Fahrzeugzittern bei Hochgeschwindigkeitsfahrten zu Fehlern beim Bildabgleich führen, sodass die entsprechenden Verkehrszeichen nicht stabil erkannt werden können. Daher ist die Verkehrszeichenerkennung im Bereich der Fahrassistenz noch nicht weit verbreitet. Die ausgereifteren Anwendungslösungen sind wie folgt:

Automatische Geschwindigkeitsbegrenzung hauptsächlich auf der Grundlage von Geschwindigkeitsbegrenzungsschildern Der vom erkannten Geschwindigkeitsbegrenzungsschild angezeigte Geschwindigkeitsbegrenzungswert wird vom Fahrzeug zur Voraussage verwendet. Hier stellen wir mehrere verschiedene Geschwindigkeitswerte zum Vergleich ein.

VReal stellt die aktuelle tatsächliche Reisegeschwindigkeit des Fahrzeugs dar, Vtarget stellt die Soll-Reisegeschwindigkeit des Fahrzeugs dar, Vlim stellt die Informationen zum Geschwindigkeitsgrenzwert dar und Vfront stellt die erkannte Geschwindigkeit des vorausfahrenden Fahrzeugs dar.

Entsprechend den sensiblen Informationen über die Geschwindigkeit des eigenen Fahrzeugs werden die folgenden Geschwindigkeitsbegrenzungsstrategien in unterschiedlichem Ausmaß durchgeführt:


1) Die Geschwindigkeit des Fahrzeugs mit fester Geschwindigkeit


Wenn erkannt wird, dass das Fahrzeug VReal>Vlim ist und Vtarget


Wenn die VReal des Fahrzeugs erkannt wird

=Vlim, bremst das System automatisch entsprechend dem erkannten Geschwindigkeitsbegrenzungswert Vlim ab;

2) Das Fahrzeug folgt dem Fahrzeug vorne

Wenn es erkennt, dass das Fahrzeug VReal>VFront>Vlim ist, stellt das System sicher, dass das Fahrzeug im Falle einer Kollision mit dem vorausfahrenden Fahrzeug keine automatische Verzögerungskontrolle durchführt.


Wenn es erkennt, dass das Fahrzeug VReal

Vorgezogenes Zusammenführen basierend auf der Zusammenführungsstrategie


Für Fahrzeuge, die auf Autobahnen fahren, müssen fahrende Fahrzeuge das Problem eines frühen Spurwechsels in verschiedenen Szenarien berücksichtigen. Es gibt derzeit zwei mögliche Lösungen:

Erstens, wenn a Werden zusammenführende Schilderinformationen in einer bestimmten Entfernung erkannt, wird der Fahrer im Voraus per Sprache oder Instrumentenbild aufgefordert, den Spurwechsel des Fahrzeugs zu steuern und das Fahrzeug auf die Zielspur zu wechseln.

Zweitens, wenn das System empfängt Informationen auf Spurebene im Zusammenhang mit hochpräzisen Karten vor einer bestimmten Entfernung können das Fahrzeug direkt steuern, um die Spur auf die Zielspur zu wechseln. Während dieser Zeit muss erkannt werden, ob die Zielspurlinie eine gepunktete Linie ist, ob das Ziel Spurwechsel ist sicher usw.


Vorbremsung basierend auf Ampelerkennung


Das auf Ampelzeichenerkennung basierende Fahrassistenzsystem erfordert, dass das System das Fahren und Spurwechseln von Fahrzeugen anhand der erkannten Ampeln im Voraus steuert.

Ein Artikel über das Verkehrszeichenerkennungssystem beim autonomen FahrenEs gibt hauptsächlich die folgenden Steuerungsszenenstrategien:


1) Wenn das grüne Licht erkannt wird


Wenn das Auto dem vorausfahrenden Fahrzeug folgt und das vorausfahrende Fahrzeug mit geringerer Geschwindigkeit fährt, folgt das Fahrzeug Sorgen Sie für Kollisionssicherheit, folgen Sie weiterhin dem vorausfahrenden Auto und überwachen Sie die Änderungen der Ampel im Auto, sobald die Ampel auf Gelb wechselt, und halten Sie eine bestimmte Verzögerung bis zum Stillstand ein. Wenn das gelbe Licht erkannt wird


Wenn das Auto das gelbe Licht erkennt, muss es unabhängig davon, ob das Auto dem Auto folgt, die Verzögerung und das Bremsen des Autos steuern. Während des Verzögerungsvorgangs kann es aus Komfortgründen abgebremst werden Der Rückwärtswiderstand des Motors wird in Bremsen umgewandelt. Steuern Sie das Fahrzeug so, dass es bis zum Stillstand abbremst, und halten Sie das Fahrzeug im Bremszustand, sodass es mehr als 1 m vom vorausfahrenden Fahrzeug entfernt ist. (Dabei ist die Anwendung der ersten Funktion einfacher zu verstehen Die Anwendung der zweiten Funktion ist für die Entwicklung von größerer Bedeutung und beinhaltet die Logik des automatischen Spurwechsels von L2 auf L3. Die Anwendung der dritten Funktion scheint intelligenter zu sein – Bremsen im Voraus, ähnlich der Logik von V2X)


Der Entwicklungsstand fortschrittlicher Fahrassistenzsysteme in China

Durch die Kombination der Entwicklung der Technologie selbst und des chinesischen Straßenverkehrsumfelds mit den spezifischen Bedürfnissen der Verbraucher können wir den Entwicklungstrend fortschrittlicher Fahrassistenzsysteme auf dem chinesischen Markt zusammenfassen:

(1) Aus Sicht der technologischen Entwicklung werden fortschrittliche Fahrassistenzsysteme noch lange Zeit einen kontinuierlichen Entwicklungstrend beibehalten, da die Verbraucher der Fahrzeugsicherheit immer mehr Aufmerksamkeit schenken werden. Gleichzeitig wandeln sich fortschrittliche Fahrassistenzsysteme von der unabhängigen Entwicklung einer einzelnen Technologie hin zur Entwicklung integrierter aktiver Sicherheitssysteme, die Plattformen wie Sensoren und Steuerungssysteme gemeinsam nutzen können. Sobald das Fahrzeug mit grundlegendem ESP und ACC ausgestattet ist und anderen Technologien kann es einfach sein. Und die Hinzufügung anderer sicherer Fahrassistenztechnologien zu geringeren Kosten wird die Anwendung fortschrittlicher Fahrassistenzsystemtechnologien in Automobilen weiter fördern.

(2) Einige relativ preisgünstige und sehr praktische fortschrittliche Fahrassistenzsysteme, wie Reifendrucküberwachungssysteme, elektronische Stabilitätssysteme ESP usw., wurden vom Markt aufgrund der starken Nachfrage voll und ganz anerkannt Die Penetrationsrate im Low-End-Markt wird stetig zunehmen.

(3) Chinesische Verbraucher haben offensichtlich Aufmerksamkeit und Nachfrage nach Technologien zur Absicherungsunterstützung und Sehverbesserung gezeigt, die in der nächsten Phase sicherlich zum Hauptwachstumspunkt in diesem Bereich werden werden.

(4) Einige Technologien, die höhere Anforderungen an Straßen stellen, wie z. B. Spurwechselassistent, Spurverlassenswarnung, ACC usw., sowie Technologien, die nicht mit den Fahrgewohnheiten chinesischer Verbraucher vereinbar sind, wie z. B. Spurhaltesysteme , Fahrerermüdungserkennung und alkoholfreie Sperrsysteme usw. werden möglicherweise über einen längeren Zeitraum nur langsam weiterentwickelt.

Einige Schwierigkeiten von TSR

Heutzutage kann die aktuelle Technologie nicht alle Verkehrszeichen erkennen und auch nicht unter allen Bedingungen funktionieren. Es gibt mehrere Bedingungen, die die Leistung des TSR-Systems einschränken, darunter die folgenden:

  • Verschmutzte oder falsch eingestellte Scheinwerfer
  • Verschmutzte, beschlagene oder verstopfte Windschutzscheiben
  • Verzogene, verdrehte oder verbogene Schilder
  • Anormaler Reifen oder Rad Zustand
  • Fahrzeugneigung aufgrund schwerer Gegenstände oder veränderter Federung

Während TSR und ähnliche Fahrzeugsensortechnologien auf dem Weg zum vollständig autonomen Fahren hilfreich sind, sind wir noch nicht am Ziel. Selbst TSR ist nur ein Fahrassistenzsystem. Fahrer können sich beim Fahren nicht ausschließlich auf ein ADAS-System verlassen.

Im Allgemeinen sind die Grundfunktionen von TSR relativ ausgereift, bei erweiterten Funktionen und der Vereinfachung der ökologischen Kette ist jedoch noch einiges zu tun.

Das obige ist der detaillierte Inhalt vonEin Artikel über das Verkehrszeichenerkennungssystem beim autonomen Fahren. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Dieser Artikel ist reproduziert unter:51cto.com. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen