Heim > Artikel > Backend-Entwicklung > Jeder von Amway verfügt über ein Python-Big-Data-Analyse-Artefakt
Python-Video-TutorialDie Kolumne stellt ein Big-Data-Analyseartefakt vor
Empfohlen (kostenlos): Python-Video-Tutorial
So verbessern Sie die Laufgeschwindigkeit von Pandas code> , ich habe es schon oft vorgestellt und <code>Dask
wird darin oft erwähnt. Viele Freunde, die noch nie damit in Berührung gekommen sind, wissen heute möglicherweise nicht viel darüber . Pandas
运行速度的提升方法,之前已经介绍过很多回了,里面经常提及Dask
,很多朋友没接触过可能不太了解,今天就推荐一下这个神器。
1、什么是Dask?
Pandas
和Numpy
大家都不陌生了,代码运行后数据都加载到RAM中,如果数据集特别大,我们就会看到内存飙升。但有时要处理的数据并不适合RAM
,这时候Dask
来了。
Dask
是开源免费的。它是与其他社区项目(如Numpy,Pandas和Scikit-Learn)协调开发的。
官方:https://dask.org/
Dask
支持Pandas
的DataFrame
和NumpyArray
的数据结构,并且既可在本地计算机上运行,也可以扩展到在集群上运行。
基本上,只要编写一次代码,使用普通的Pythonic
语法,就可在本地运行或部署到多节点集群上。这本身就是一个很牛逼的功能了,但这还不是最牛逼的。
我觉得Dask
的最牛逼的功能是:它兼容大部分我们已经在用的工具,并且只需改动少量的代码,就可以利用自己笔记本电脑上已有的处理能力并行运行代码。而并行处理数据就意味着更少的执行时间,更少的等待时间和更多的分析时间。
下面这个就是Dask
进行数据处理的大致流程。
2、Dask支持哪些现有工具?
这一点也是我比较看中的,因为Dask
可以与Python
数据处理和建模的库包兼容,沿用库包的API,这对于Python使用者来说学习成本是极低的。而像Hadoop
、Spark
这种大数据处理是有很高的学习门槛和时间成本的。
目前,Dask
可支持pandas
、Numpy
、Sklearn
、XGBoost
、XArray
、RAPIDS
等等,光是这几项我觉得就足够用了,至少对于常用的数据处理、建模分析是完全覆盖得掉的。
3、Dask安装
可以使用 conda
或者 pip
,或从源代码安装dask
。
conda install dask
因为dask
有很多依赖,所以为了快速安装也可用下面代码,将安装运行Dask
所需的最少依赖关系集。
conda install dask-core
再有就是通过源来安装。
git clone https://github.com/dask/dask.git cd dask python -m pip install .
4、Dask如何使用?
Numpy、pandas
Dask
引入了3个并行集合,它们可以存储大于RAM的数据,这些集合有DataFrame
、Bags
、Arrays
。这些集合类型中的每一个都能够使用在RAM和硬盘之间分区的数据,以及分布在群集中多个节点上的数据。
Dask
的使用是非常清晰的,如果你使用NumPy
数组,就从Dask
数组开始,如果你使用Pandas DataFrame
,就从Dask DataFrame
开始,依此类推。
import dask.array as da x = da.random.uniform(low=0, high=10, size=(10000, 10000), # normal numpy code chunks=(1000, 1000)) # break into chunks of size 1000x1000 y = x + x.T - x.mean(axis=0) # Use normal syntax for high level algorithms # DataFrames import dask.dataframe as dd df = dd.read_csv('2018-*-*.csv', parse_dates='timestamp', # normal Pandas code blocksize=64000000) # break text into 64MB chunks s = df.groupby('name').balance.mean() # Use normal syntax for high level algorithms # Bags / lists import dask.bag as db b = db.read_text('*.json').map(json.loads) total = (b.filter(lambda d: d['name'] == 'Alice') .map(lambda d: d['balance']) .sum())
这些高级接口在略微变化的情况下复制了标准接口。对于原始项目中的大部分API,这些接口会自动为我们并行处理较大的数据集,实现上不是很复杂,对照Dask
的doc文档即可一步步完成。
Delayed
下面说一下Dask
的 Delay
功能,非常强大。
Dask.delayed
是一种并行化现有代码的简单而强大的方法。之所以被叫做delayed
是因为,它没有立即计算出结果,而是将要作为任务计算的结果记录在一个图形中,稍后将在并行硬件上运行。
有时问题用已有的dask.array
或dask.dataframe
可能都不适合,在这些情况下,我们可以使用更简单的dask.delayed
Pandas
und Numpy
sind alle bekannt. Nachdem der Code ausgeführt wurde, werden die Daten in den RAM geladen, wir werden sehen Die Erinnerung steigt. Aber manchmal passen die zu verarbeitenden Daten nicht in den RAM
. Dann kommt Dask
. 🎜🎜Dask
ist Open Source und kostenlos. Es wird in Abstimmung mit anderen Community-Projekten wie Numpy, Pandas und Scikit-Learn entwickelt. 🎜Offiziell: https://dask.org/🎜
Dask
unterstützt Pandas
s DataFrame
und Die Datenstruktur von NumpyArray
kann auf einem lokalen Computer ausgeführt oder für die Ausführung auf einem Cluster skaliert werden. 🎜🎜Grundsätzlich schreiben Sie den Code einmal, verwenden Sie die normale Pythonic
-Syntax und führen Sie ihn lokal aus oder stellen Sie ihn in einem Cluster mit mehreren Knoten bereit. Das ist an sich schon eine tolle Funktion, aber nicht die tollste Sache. 🎜🎜Ich denke, die großartigste Funktion von Dask
ist: 🎜Es ist mit den meisten Tools kompatibel, die wir bereits verwenden, und mit nur wenigen Codeänderungen können Sie die Tools verwenden, die Sie bereits verwenden Sie haben auf Ihrem Laptop Rechenleistung, um Code parallel auszuführen. Die parallele Verarbeitung von Daten bedeutet weniger Ausführungszeit, weniger Wartezeit und mehr Analysezeit. 🎜🎜🎜Das Folgende ist der allgemeine Prozess der Datenverarbeitung durch Dask
. Dask
mit dem Datenverarbeitungs- und Modellierungsbibliothekspaket Python
kompatibel ist und der API des Bibliothekspakets folgt, was sehr gut ist nützlich für Python. Der Lernaufwand für Benutzer ist äußerst gering. Die Verarbeitung großer Datenmengen wie Hadoop
und Spark
weist eine hohe Lernschwelle und einen hohen Zeitaufwand auf. 🎜🎜Derzeit kann Dask
pandas
, Numpy
, Sklearn
, XGBoost
, XArray
, RAPIDS
usw., ich denke, diese reichen aus, zumindest für die allgemeine Datenverarbeitung und Modellanalyse werden sie vollständig abgedeckt. conda
oder pip
verwenden oder dask
aus dem Quellcode installieren. 🎜def inc(x): return x + 1 def double(x): return x * 2 def add(x, y): return x + y data = [1, 2, 3, 4, 5] output = [] for x in data: a = inc(x) b = double(x) c = add(a, b) output.append(c) total = sum(output) 45🎜Da
dask
viele Abhängigkeiten hat, können Sie zur Schnellinstallation auch den folgenden Code verwenden, der den Mindestsatz an Abhängigkeiten installiert, die zum Ausführen von Dask
erforderlich sind. 🎜import dask output = [] for x in data: a = dask.delayed(inc)(x) b = dask.delayed(double)(x) c = dask.delayed(add)(a, b) output.append(c) total = dask.delayed(sum)(output)🎜Die andere Möglichkeit besteht darin, es von der Quelle zu installieren. 🎜
total.visualize()🎜🎜4. Wie verwende ich Dask? 🎜🎜🎜🎜Numpy, Pandas🎜🎜🎜
Dask
führt drei parallele Sammlungen ein, die Daten speichern können, die größer als RAM sind. Diese Sammlungen umfassen DataFrame
, Bags, <code>Arrays
. Jeder dieser Sammlungstypen ist in der Lage, mit Daten zu arbeiten, die zwischen RAM und Festplatte aufgeteilt sind, sowie mit Daten, die über mehrere Knoten im Cluster verteilt sind. 🎜🎜Die Verwendung von Dask
ist sehr klar. Wenn Sie das Array NumPy
verwenden, beginnen Sie mit dem Array Dask
, beginnend mit Dask DataFrame
und so weiter. 🎜>>> total.compute() 45🎜Diese High-Level-Schnittstellen replizieren die Standardschnittstellen mit geringfügigen Änderungen. Für die meisten APIs im Originalprojekt verarbeiten diese Schnittstellen für uns automatisch größere Datensätze. Die Implementierung ist nicht sehr kompliziert. Sie können sie Schritt für Schritt abschließen, indem Sie sich auf das Dokument von
Dask beziehen. Code>. 🎜🎜🎜Delayed🎜🎜🎜 Lassen Sie uns über die <code>Delay
-Funktion von Dask
sprechen, die sehr leistungsfähig ist. 🎜🎜Dask.delayed
ist eine einfache und leistungsstarke Möglichkeit, vorhandenen Code zu parallelisieren. Es heißt verzögert
, weil es das Ergebnis nicht sofort berechnet, sondern das Ergebnis der Berechnung als Aufgabe in einem Diagramm aufzeichnet, das später auf paralleler Hardware ausgeführt wird. 🎜🎜Manchmal ist das vorhandene dask.array
oder dask.dataframe
für das Problem nicht geeignet. In diesen Fällen können wir das einfachere delayedInterface parallelisiert benutzerdefinierte Algorithmen. Nehmen Sie zum Beispiel das folgende Beispiel. 🎜<pre class="brush:php;toolbar:false">def inc(x):
return x + 1
def double(x):
return x * 2
def add(x, y):
return x + y
data = [1, 2, 3, 4, 5]
output = []
for x in data:
a = inc(x)
b = double(x)
c = add(a, b)
output.append(c)
total = sum(output)
45</pre>
<p>上面代码在单个线程中按顺序运行。但是,我们看到其中很多可以并行执行。<code>Dask delayed
函数可修饰inc
、double
这些函数,以便它们可延迟运行,而不是立即执行函数,它将函数及其参数放入计算任务图中。
我们简单修改代码,用delayed
函数包装一下。
import dask output = [] for x in data: a = dask.delayed(inc)(x) b = dask.delayed(double)(x) c = dask.delayed(add)(a, b) output.append(c) total = dask.delayed(sum)(output)
代码运行后inc
、double
、add
和sum
都还没有发生,而是生成一个计算的任务图交给了total
。然后我们用visualizatize
看下任务图。
total.visualize()
上图明显看到了并行的可能性,所以毫不犹豫,使用compute
进行并行计算,这时才完成了计算。
>>> total.compute() 45
由于数据集较小无法比较时间,这里只介绍下使用方法,具体可自己动手实践下。
Sklearn机器学习
关于机器学习的并行化执行,由于内容较多,东哥会在另一篇文章展开。这里简单说下一下dask-learn
。
dask-learn
项目是与Sklearn
开发人员协作完成的。现在可实现并行化有Scikit-learn
的Pipeline
、GridsearchCV
和RandomSearchCV
以及这些的变体,它们可以更好地处理嵌套的并行操作。
因此,如果你将sklearn
替换为dklearn
,那么速度将会提升很多。
# from sklearn.grid_search import GridSearchCV from dklearn.grid_search import GridSearchCV # from sklearn.pipeline import Pipeline from dklearn.pipeline import Pipeline 下面是一个使用Pipeline的示例,其中应用了PCA和逻辑回归。 from sklearn.datasets import make_classification X, y = make_classification(n_samples=10000, n_features=500, n_classes=2, n_redundant=250, random_state=42) from sklearn import linear_model, decomposition from sklearn.pipeline import Pipeline from dklearn.pipeline import Pipeline logistic = linear_model.LogisticRegression() pca = decomposition.PCA() pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)]) grid = dict(pca__n_components=[50, 100, 150, 250], logistic__C=[1e-4, 1.0, 10, 1e4], logistic__penalty=['l1', 'l2']) # from sklearn.grid_search import GridSearchCV from dklearn.grid_search import GridSearchCV estimator = GridSearchCV(pipe, grid) estimator.fit(X, y)
结果是:sklearn
会在40秒钟左右执行此计算,而dask-learn
替代品大约需要10秒钟。
另外,如果添加以下代码可以连接到集群,通过Client
可以展示整个计算过程的dashboard
,由Bokeh
实现。
from dask.distributed import Client c = Client('scheduler-address:8786')
5、总结
以上就是Dask
的简单介绍,Dask的功能是非常强大的,且说明文档也非常全,既有示例又有解释。感兴趣的朋友可以自行去官网或者GitHub
学习,东哥下次分享使用Dask
进行机器学习的一些实例。
Das obige ist der detaillierte Inhalt vonJeder von Amway verfügt über ein Python-Big-Data-Analyse-Artefakt. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!