Heim >Backend-Entwicklung >Python-Tutorial >So generieren und lesen Sie Tensorflow-TFRecords-Dateien

So generieren und lesen Sie Tensorflow-TFRecords-Dateien

不言
不言Original
2018-05-02 14:26:561904Durchsuche

Dieser Artikel stellt hauptsächlich die Methode zum Generieren und Lesen von Tensorflow-TFRecords-Dateien vor. Jetzt kann ich ihn mit Ihnen teilen.

TensorFlow stellt das TFRecords-Format zur Verfügung Daten einheitlich speichern.

Die Daten in der TFRecords-Datei werden im Format tf.train.Example Protocol Buffer gespeichert. Der folgende Code gibt die Definition von tf.train.Example an.

message Example { 
  Features features = 1; 
}; 
message Features { 
  map<string, Feature> feature = 1; 
}; 
message Feature { 
  oneof kind { 
  BytesList bytes_list = 1; 
  FloatList float_list = 2; 
  Int64List int64_list = 3; 
} 
};

Im Folgenden wird vorgestellt, wie man Tfrecords-Dateien generiert und liest:

Stellen Sie zunächst die Generierung von Tfrecords-Dateien vor , direkt Der obige Code:

from random import shuffle 
import numpy as np 
import glob 
import tensorflow as tf 
import cv2 
import sys 
import os 
 
# 因为我装的是CPU版本的,运行起来会有&#39;warning&#39;,解决方法入下,眼不见为净~ 
os.environ[&#39;TF_CPP_MIN_LOG_LEVEL&#39;] = &#39;2&#39; 
 
shuffle_data = True 
image_path = &#39;/path/to/image/*.jpg&#39; 
 
# 取得该路径下所有图片的路径,type(addrs)= list 
addrs = glob.glob(image_path) 
# 标签数据的获得具体情况具体分析,type(labels)= list 
labels = ... 
 
# 这里是打乱数据的顺序 
if shuffle_data: 
  c = list(zip(addrs, labels)) 
  shuffle(c) 
  addrs, labels = zip(*c) 
 
# 按需分割数据集 
train_addrs = addrs[0:int(0.7*len(addrs))] 
train_labels = labels[0:int(0.7*len(labels))] 
 
val_addrs = addrs[int(0.7*len(addrs)):int(0.9*len(addrs))] 
val_labels = labels[int(0.7*len(labels)):int(0.9*len(labels))] 
 
test_addrs = addrs[int(0.9*len(addrs)):] 
test_labels = labels[int(0.9*len(labels)):] 
 
# 上面不是获得了image的地址么,下面这个函数就是根据地址获取图片 
def load_image(addr): # A function to Load image 
  img = cv2.imread(addr) 
  img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_CUBIC) 
  img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 
  # 这里/255是为了将像素值归一化到[0,1] 
  img = img / 255. 
  img = img.astype(np.float32) 
  return img 
 
# 将数据转化成对应的属性 
def _int64_feature(value):  
  return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) 
 
 
def _bytes_feature(value): 
  return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) 
 
 
def _float_feature(value): 
  return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) 
 
# 下面这段就开始把数据写入TFRecods文件 
 
train_filename = &#39;/path/to/train.tfrecords&#39; # 输出文件地址 
 
# 创建一个writer来写 TFRecords 文件 
writer = tf.python_io.TFRecordWriter(train_filename) 
 
for i in range(len(train_addrs)): 
  # 这是写入操作可视化处理 
  if not i % 1000: 
    print(&#39;Train data: {}/{}&#39;.format(i, len(train_addrs))) 
    sys.stdout.flush() 
  # 加载图片 
  img = load_image(train_addrs[i]) 
 
  label = train_labels[i] 
 
  # 创建一个属性(feature) 
  feature = {&#39;train/label&#39;: _int64_feature(label), 
        &#39;train/image&#39;: _bytes_feature(tf.compat.as_bytes(img.tostring()))} 
 
  # 创建一个 example protocol buffer 
  example = tf.train.Example(features=tf.train.Features(feature=feature)) 
 
  # 将上面的example protocol buffer写入文件 
  writer.write(example.SerializeToString()) 
 
writer.close() 
sys.stdout.flush()

Oben wird nur die Generierung der train.tfrecords-Datei eingeführt, der Rest der Validierung und des Tests Schlussfolgerungen ziehen. .

Im Folgenden wird das Lesen von Tfrecords-Dateien vorgestellt:

import tensorflow as tf 
import numpy as np 
import matplotlib.pyplot as plt 
import os  
os.environ[&#39;TF_CPP_MIN_LOG_LEVEL&#39;] = &#39;2&#39; 
data_path = &#39;train.tfrecords&#39; # tfrecords 文件的地址 
 
with tf.Session() as sess: 
  # 先定义feature,这里要和之前创建的时候保持一致 
  feature = { 
    &#39;train/image&#39;: tf.FixedLenFeature([], tf.string), 
    &#39;train/label&#39;: tf.FixedLenFeature([], tf.int64) 
  } 
  # 创建一个队列来维护输入文件列表 
  filename_queue = tf.train.string_input_producer([data_path], num_epochs=1) 
 
  # 定义一个 reader ,读取下一个 record 
  reader = tf.TFRecordReader() 
  _, serialized_example = reader.read(filename_queue) 
 
  # 解析读入的一个record 
  features = tf.parse_single_example(serialized_example, features=feature) 
 
  # 将字符串解析成图像对应的像素组 
  image = tf.decode_raw(features[&#39;train/image&#39;], tf.float32) 
 
  # 将标签转化成int32 
  label = tf.cast(features[&#39;train/label&#39;], tf.int32) 
 
  # 这里将图片还原成原来的维度 
  image = tf.reshape(image, [224, 224, 3]) 
 
  # 你还可以进行其他一些预处理.... 
 
  # 这里是创建顺序随机 batches(函数不懂的自行百度) 
  images, labels = tf.train.shuffle_batch([image, label], batch_size=10, capacity=30, min_after_dequeue=10) 
 
  # 初始化 
  init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) 
  sess.run(init_op) 
 
  # 启动多线程处理输入数据 
  coord = tf.train.Coordinator() 
  threads = tf.train.start_queue_runners(coord=coord) 
 
  .... 
 
  #关闭线程 
  coord.request_stop() 
  coord.join(threads) 
  sess.close()

Verwandte Empfehlungen:

Detaillierte Erläuterung der Verwendung von TensorFlow zur Implementierung des logistischen Regressionsalgorithmus

Das obige ist der detaillierte Inhalt vonSo generieren und lesen Sie Tensorflow-TFRecords-Dateien. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn