suchen
HeimBackend-EntwicklungPython-Tutorial详解Python使用simplejson模块解析JSON的方法

1,Json模块介绍
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999的一个子集。JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C, C++, C#, Java, JavaScript, Perl, Python等)。这些特性使JSON成为理想的数据交换语言。

2,Json的格式
2.1,对象:

{name:"Peggy",email:"peggy@gmail.com",homepage:"http://www.jb51.net"} 
{ 属性 : 值 , 属性 : 值 , 属性 : 值 } 

2.2,数组:
是有顺序的值的集合。一个数组开始于"[",结束于"]",值之间用","分隔。

[ 
{name:"Peggy",email:"peggy@gmail.com",homepage:"http://www.jb51.net"}, {name:"Peggy",email:"peggy@gmail.com",homepage:"http://www.jb51.net"}, 
{name:"Peggy",email:"peggy@gmail.com",homepage:"http://www.jb51.net"} 
] 

另,值可以是字符串、数字、true、false、null,也可以是对象或数组。这些结构都能嵌套。

3,Json的导入导出
这里的write/dump的含义是将Json对象输入到一个python_object中,如果python_object是文件,则dump到文件中;如果是对象,则dump到内存中。这是序列化。

3.1,读取Json文件

import simplejson as json 
f = file('table.json') 
source = f.read() 
target = json.JSONDecoder().decode(source) 
print target 

import simplejson as json 
jsonobject = json.load(file('table.json')) 
print jsonobject 

3.2,显示Json文件
为了显示Json格式好看,原来的Json文件:

[admin@r42h06016.xy2.aliyun.com]$python readJson.py 
[{'Query': 'desc zt1;', 'Message': '{"DescibeTableWithPartSpec": "false", "GetTableMetaString":"{\\"tableName\\":\\"zt1\\",\\"owner\\":\\"1365937150772213\\",\\"createTime\\":1346218114,\\"lastModifiedTime\\":0,\\"columns\\":[{\\"name\\":\\"a\\",\\"type\\":\\"string\\"},{\\"name\\":\\"b\\",\\"type\\":\\"string\\"}],\\"partitionKeys\\":[{\\"name\\":\\"pt\\",\\"type\\":\\"string\\"}]}"}', 'QueryID': '', 'Result': 'OK'}] 

执行文件:

import simplejson as json 
jsonobject = json.load(file('table.json')) 
print json.dumps(jsonobject,sort_keys=True,indent=4) 

显示:

[admin@r42h06016.xy2.aliyun.com]$python readJson.py 
[ 
  { 
    "Message": "{\"DescibeTableWithPartSpec\": \"false\", \"GetTableMetaString\":\"{\\\"tableName\\\":\\\"zt1\\\",\\\"owner\\\":\\\"1365937150772213\\\",\\\"createTime\\\":1346218114,\\\"lastModifiedTime\\\":0,\\\"columns\\\":[{\\\"name\\\":\\\"a\\\",\\\"type\\\":\\\"string\\\"},{\\\"name\\\":\\\"b\\\",\\\"type\\\":\\\"string\\\"}],\\\"partitionKeys\\\":[{\\\"name\\\":\\\"pt\\\",\\\"type\\\":\\\"string\\\"}]}\"}", 
    "Query": "desc zt1;", 
    "QueryID": "", 
    "Result": "OK" 
  } 
] 

3.3,json模块示例:

import json 
# Converting Python to JSON 
json_object = json.write( python_object ) 
# Converting JSON to Python 
python_object = json.read( json_object ) 

3.4,simplejson模块 示例:

import simplejson 
# Converting Python to JSON 
json_object = simplejson.dumps( python_object ) 
# Converting JSON to Python 
python_object = simplejson.loads( json_object ) 

其中的json_object也可以是文件名比如file(“tmp/table.json”)

4,Json数据的解析
假设对于data.json文件如下:

复制代码 代码如下:
{'isSuccess': True, 'errorMsg': '', 'total': 1, 'data': [{'isOnline': True, 'idc': '\xe6\x9d\xad\xe5\xb7\x9e\xe5\xbe\xb7\xe8\x83\x9c\xe6\x9c\xba\xe6\x88\xbf', 'assetsNum': 'B50070100007003', 'responsibilityPerson': '\xe5\xbc\xa0\xe4\xb9\x8b\xe8\xaf\x9a', 'deviceModel': 'PowerEdge 1950', 'serviceTag': '729HH2X', 'ip': '172.16.20.163', 'hostname': 'hzshterm1.alibaba.com', 'manageIp': '172.31.58.223', 'cabinet': 'H05', 'buyTime': '2009-06-29', 'useState': '\xe4\xbd\xbf\xe7\x94\xa8\xe4\xb8\xad', 'memoryInfo': {'amount': 4, 'size': 8192}, 'cpuInfo': {'coreNum': 8, 'l2CacheSize': 6144, 'amount': 2, 'model': 'Intel(R) Xeon(R) CPU           E5405  @ 2.00GHz', 'masterFrequency': 1995}, 'cabinetPositionNum': '', 'outGuaranteeTime': '', 'logicSite': '\xe4\xb8\xad\xe6\x96\x87\xe7\xab\x99'}]} 
首先导入该文件,建立Json对象,并查看类型,已经是dict类型了。
#test.py 
import simplejson as json 
ddata = json.loads(file("data.json")) 
print ddata 
print type(ddata)#<type 'dict'> 

其次,我们以读字典中key 为”data”对应的键值

>>> ddata['data']  //查看字典的方法!

>>>type(ddata['data']) 
<type 'list'> 

发现ddata[‘data']是一个列表,列表就要用序号来查询

>>> ddata['data'][0]     //查看列表的方法!

>>> type(ddata['data'][0]) 
<type 'dict'> 

ddata[‘data']列表的0号元素是个字典。。
好,那我们查查key为idc的键值是多少

>>> ddata['data'][0]['idc']     //查看字典的方法!

>>> ddata['data'][0]['idc']     //查看字典的方法! 
'\xe6\x9d\xad\xe5\xb7\x9e\xe5\xbe\xb7\xe8\x83\x9c\xe6\x9c\xba\xe6\x88\xbf' 
>>> print ddata['data'][0]['idc'] 
杭州德胜机房  

5.一些性能讨论

简单测试了一下,如果用JSON,也就是python2.6以上自带的json处理库,效率还算可以:
1K的数据,2.9GHz的CPU,单核下每秒能dump:36898次。大约是pyamf的5倍。但数据量较大,约为pyamf的1.67倍(1101/656)。

start_time: 1370747463.77
loop_num: 36898
end_time:  1370747464.78

 
再看看simplejson,没有安装C扩展的情况下:

2016324173247058.jpg (592×62)

simplejson,没有安装C扩展,跑出的结果让我惊讶:

start_time: 1370748132.87
loop_num: 1361
end_time:  1370748133.88

效率如此之低下。
 
下面是测试代码:

#! /usr/bin/env python 
#coding=utf-8 
 
import time 
import json 
 
test_data = { 
  'baihe': { 
    'name': unicode('百合', 'utf-8'),    
    'say': unicode('清新,淡雅,花香', 'utf-8'),    
    'grow_time': 0.5,     
    'fruit_time': 0.5,    
    'super_time': 0.5,    
    'total_time': 1,   
    'buy':{'gold':2, } ,    
    'harvest_fruit': 1,   
    'harvest_super': 1,   
    'sale': 1,      
    'level_need': 0,   
    'experience' : 2,   
    'exp_fruit': 1,    
    'exp_super': 1,    
    'used': True, 
  }, 
  '1':{ 
    'interval' : 0.3,  
    'probability' : { 
      '98': {'chips' : (5, 25), }, 
      '2' : {'gem' : (1,1), }, 
    }, 
  }, 
  '2':{ 
    'unlock' : {'chips':1000, 'FC':10,}, 
    'interval' : 12,  
    'probability' : { 
      '70': {'chips' : (120, 250), }, 
      '20': {'gem' : (1,1), }, 
      '10': {'gem' : (2,2), }, 
    }, 
  }, 
  'one':{ 
    '10,5' :{'id':'m01', 'Y':1, 'msg':u'在罐子里发现了一个银币!',}, 
    '3,7' :{'id':'m02', 'Y':10,'msg':u'发现了十个银币!好大一笔钱!',}, 
    '15,5' :{'id':'m03', 'Y':2, 'msg':u'一只老鼠跑了过去',}, 
    '7,4' :{'id':'m04', 'Y':4, 'msg':u'发现了四个生锈的银币……',}, 
    '2,12' :{'id':'m05', 'Y':6, 'msg':u'六个闪亮的银币!',}, 
  },   
   
} 
 
start_time = time.time() 
print "start_time:", start_time 
 
j = 1 
while True: 
  j += 1 
  a = json.dumps(test_data) 
  data_length = len(a) 
  end_time = time.time() 
  if end_time - start_time >= 1 : 
    break 
print "loop_num:", j 
print "end_time: ",end_time 
print data_length ,a 

 
总结:python自带的json,性能可以接受。simplejson,如果没有C扩展加速,效率极其低下。

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie erstellen Sie mehrdimensionale Arrays mit Numpy?Wie erstellen Sie mehrdimensionale Arrays mit Numpy?Apr 29, 2025 am 12:27 AM

Durch die folgenden Schritte können mehrdimensionale Arrays mit Numpy erstellt werden: 1) Verwenden Sie die Funktion numpy.array (), um ein Array wie NP.Array ([1,2,3], [4,5,6]) zu erstellen, um ein 2D-Array zu erstellen; 2) Verwenden Sie np.zeros (), np.ones (), np.random.random () und andere Funktionen, um ein Array zu erstellen, das mit spezifischen Werten gefüllt ist; 3) Verstehen Sie die Form- und Größeneigenschaften des Arrays, um sicherzustellen, dass die Länge des Unterarrays konsistent ist und Fehler vermeiden. 4) Verwenden Sie die Funktion np.reshape (), um die Form des Arrays zu ändern. 5) Achten Sie auf die Speichernutzung, um sicherzustellen, dass der Code klar und effizient ist.

Erklären Sie das Konzept des 'Rundfunks' in Numpy -Arrays.Erklären Sie das Konzept des 'Rundfunks' in Numpy -Arrays.Apr 29, 2025 am 12:23 AM

SendeminnumpyissamethodtoperformoperationsonarraysofdifferentShapesByAutomaticaligningTHem.itsimplifiesCode, Verbesserung der Verschiebbarkeit, und BoostSPerformance.her'Showitworks: 1) kleinereArraysArepaddedwithonestOMatchDimens.2) compatibledimens

Erklären Sie, wie Sie zwischen Listen, Array.Array und Numpy -Arrays für die Datenspeicherung auswählen.Erklären Sie, wie Sie zwischen Listen, Array.Array und Numpy -Arrays für die Datenspeicherung auswählen.Apr 29, 2025 am 12:20 AM

Forpythondatastorage, ChooselistsforflexibilitätswithmixedDatatypes, Array.Arrayformemory-effizientesHomogenoususnumericalData und NumpyArraysForAdvancedNumericalComputing.ListsareversAntileffictionForLarGenicalDataSetsetaSets;

Geben Sie ein Beispiel für ein Szenario an, in dem die Verwendung einer Python -Liste angemessener wäre als die Verwendung eines Arrays.Geben Sie ein Beispiel für ein Szenario an, in dem die Verwendung einer Python -Liste angemessener wäre als die Verwendung eines Arrays.Apr 29, 2025 am 12:17 AM

PythonlistsarebetterTterThanarraysFormAnagingDiversedatatypes.1) ListScanholdElements ofdifferenttypes, 2) siearedynamic, erlauben EasyDitionSsandremovals, 3) sie antelluitive Operationenslikesklikationen, Buth), sie ohne Ereignis-effosidentandslowentlaunenfeuer.

Wie können Sie in einem Python -Array auf Elemente zugreifen?Wie können Sie in einem Python -Array auf Elemente zugreifen?Apr 29, 2025 am 12:11 AM

ToaccesselementSinapythonarray, useIndexing: my_array [2] AccessaThThirtelement, returning3.pythonuseszero-basiertindexing.1) usepositiveAndnegativeIndexing: my_list [0] fORGHEFIRSTELEMENT, MY_LIST [-1] Forthelast.2) VerwendungsforArange: my_list [1: 5] extractsselemen

Ist das Tupelverständnis in Python möglich? Wenn ja, wie und wenn nicht warum?Ist das Tupelverständnis in Python möglich? Wenn ja, wie und wenn nicht warum?Apr 28, 2025 pm 04:34 PM

In Artikel wird die Unmöglichkeit des Tupelverständnisses in Python aufgrund von Syntax -Mehrdeutigkeiten erörtert. Alternativen wie die Verwendung von Tuple () mit Generatorausdrücken werden vorgeschlagen, um Tupel effizient zu erstellen (159 Zeichen)

Was sind Module und Pakete in Python?Was sind Module und Pakete in Python?Apr 28, 2025 pm 04:33 PM

Der Artikel erläutert Module und Pakete in Python, deren Unterschiede und Verwendung. Module sind einzelne Dateien, während Pakete Verzeichnisse mit einer __init__.py -Datei sind, die verwandte Module hierarchisch organisieren.

Was ist Docstring in Python?Was ist Docstring in Python?Apr 28, 2025 pm 04:30 PM

In Artikel werden Docstrings in Python, deren Nutzung und Vorteile erörtert. Hauptproblem: Bedeutung von DocStrings für die Code -Dokumentation und -zugriffsfunktion.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

MinGW – Minimalistisches GNU für Windows

MinGW – Minimalistisches GNU für Windows

Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SublimeText3 Englische Version

SublimeText3 Englische Version

Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

SublimeText3 Linux neue Version

SublimeText3 Linux neue Version

SublimeText3 Linux neueste Version

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor