有这么个需求:一个目录下的数据只能由一个map来处理。如果多个map处理了同一个目录下的数据会导致数据错乱。 刚开始google了下,以为网上都有现成的InputFormat,找到的答案类似我之前写的 mapreduce job让一个文件只由一个map来处理。 或者是把目录写在文
有这么个需求:一个目录下的数据只能由一个map来处理。如果多个map处理了同一个目录下的数据会导致数据错乱。
刚开始google了下,以为网上都有现成的InputFormat,找到的答案类似我之前写的 “mapreduce job让一个文件只由一个map来处理“。
或者是把目录写在文件里面,作为输入:
/path/to/directory1
/path/to/directory2
/path/to/directory3
代码里面按行读取:
@Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { FileSystem fs = FileSystem.get(context.getConfiguration()); for (FileStatus status : fs.listStatus(new Path(value.toString()))) { // process file } }
都不能满足需求,还是自己实现一个 OneMapOneDirectoryInputFormat 吧,也很简单:
import java.io.IOException; import java.util.*; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.Path; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.JobContext; import org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat; import org.apache.hadoop.mapreduce.lib.input.CombineFileSplit; /** * 一个map处理一个目录的数据 */ public abstract class OneMapOneDirectoryInputFormat extends CombineFileInputFormat { private static final Log LOG = LogFactory.getLog(OneMapOneDirectoryInputFormat.class); @Override protected boolean isSplitable(JobContext context, Path file) { return false; } @Override public List getSplits(JobContext job) throws IOException { // get all the files in input path List stats = listStatus(job); List splits = new ArrayList(); if (stats.size() == 0) { return splits; } LOG.info("fileNums=" + stats.size()); Map> map = new HashMap>(); for (FileStatus stat : stats) { String directory = stat.getPath().getParent().toString(); if (map.containsKey(directory)) { map.get(directory).add(stat); } else { List fileList = new ArrayList(); fileList.add(stat); map.put(directory, fileList); } } // 设置inputSplit long currentLen = 0; List pathLst = new ArrayList(); List offsetLst = new ArrayList(); List lengthLst = new ArrayList(); Iterator itr = map.keySet().iterator(); while (itr.hasNext()) { String dir = itr.next(); List fileList = map.get(dir); for (int i = 0; i path[" + i + "]=" + pathArray[i].toString()); } splits.add(thissplit); pathLst.clear(); offsetLst.clear(); lengthLst.clear(); currentLen = 0; } return splits; } private long[] getLongArray(List lst) { long[] rst = new long[lst.size()]; for (int i = 0; i <p>这个InputFormat的具体使用方法就不说了。其实与“一个Hadoop程序的优化过程 – 根据文件实际大小实现CombineFileInputFormat”中的MultiFileInputFormat比较类似。</p> <p class="copyright"> 原文地址:Hadoop : 一个目录下的数据只由一个map处理, 感谢原作者分享。 </p>

Säureattribute umfassen Atomizität, Konsistenz, Isolation und Haltbarkeit und sind der Eckpfeiler des Datenbankdesigns. 1. Atomizität stellt sicher, dass die Transaktion entweder vollständig erfolgreich oder vollständig gescheitert ist. 2. Konsistenz stellt sicher, dass die Datenbank vor und nach einer Transaktion konsistent bleibt. 3. Isolation stellt sicher, dass sich Transaktionen nicht stören. 4. Persistenz stellt sicher, dass Daten nach der Transaktionsuntersuchung dauerhaft gespeichert werden.

MySQL ist nicht nur ein Datenbankverwaltungssystem (DBMS), sondern auch eng mit Programmiersprachen zusammen. 1) Als DBMS wird MySQL verwendet, um Daten zu speichern, zu organisieren und abzurufen und Indizes zu optimieren, können die Abfrageleistung verbessern. 2) Kombinieren Sie SQL mit Programmiersprachen, eingebettet in Python, und unter Verwendung von ORM -Tools wie SQLalchemy kann die Operationen vereinfachen. 3) Die Leistungsoptimierung umfasst Indexierung, Abfrage, Caching, Bibliothek und Tabellenabteilung und Transaktionsmanagement.

MySQL verwendet SQL -Befehle, um Daten zu verwalten. 1. Grundlegende Befehle umfassen Auswahl, Einfügen, Aktualisieren und Löschen. 2. Die erweiterte Verwendung umfasst die Funktionen, Unterabfragen und Aggregate. 3. Häufige Fehler sind Syntax-, Logik- und Leistungsprobleme. 4. Die Optimierungstipps umfassen die Verwendung von Indizes, die Vermeidung von Auswahl* und die Verwendung von Limit.

MySQL ist ein effizientes relationales Datenbankverwaltungssystem, das zum Speichern und Verwalten von Daten geeignet ist. Zu den Vorteilen gehören Hochleistungsabfragen, flexible Transaktionsverarbeitung und reichhaltige Datentypen. In praktischen Anwendungen wird MySQL häufig in E-Commerce-Plattformen, sozialen Netzwerken und Content-Management-Systemen verwendet. Die Leistungsoptimierung, die Datensicherheit und die Skalierbarkeit sollten jedoch Aufmerksamkeit geschenkt werden.

Die Beziehung zwischen SQL und MySQL ist die Beziehung zwischen Standardsprachen und spezifischen Implementierungen. 1.SQL ist eine Standardsprache, die zum Verwalten und Betrieb von relationalen Datenbanken verwendet wird, wodurch Datenabschluss, Löschung, Änderung und Abfrage ermöglicht werden. 2.MYSQL ist ein spezifisches Datenbankverwaltungssystem, das SQL als Betriebssprache verwendet und eine effiziente Datenspeicherung und -verwaltung bietet.

InnoDB verwendet Redologs und undologische, um Datenkonsistenz und Zuverlässigkeit zu gewährleisten. 1.REDOLOogen zeichnen Datenseitenänderung auf, um die Wiederherstellung und die Durchführung der Crash -Wiederherstellung und der Transaktion sicherzustellen. 2.Strundologs zeichnet den ursprünglichen Datenwert auf und unterstützt Transaktionsrollback und MVCC.

Zu den wichtigsten Kennzahlen für Erklärungsbefehle gehören Typ, Schlüssel, Zeilen und Extra. 1) Der Typ spiegelt den Zugriffstyp der Abfrage wider. Je höher der Wert ist, desto höher ist die Effizienz, wie z. B. const besser als alle. 2) Der Schlüssel zeigt den verwendeten Index an, und Null zeigt keinen Index an. 3) Zeilen schätzt die Anzahl der gescannten Zeilen und beeinflussen die Abfrageleistung. 4) Extra liefert zusätzliche Informationen, z.

Die Verwendung von Temporary zeigt an, dass die Notwendigkeit, temporäre Tabellen in MySQL-Abfragen zu erstellen, die üblicherweise in der Reihenfolge mit unterschiedlichen, gruppby- oder nicht indizierten Spalten gefunden werden. Sie können das Auftreten von Indizes vermeiden und Abfragen umschreiben und die Abfrageleistung verbessern. Insbesondere bedeutet dies, dass MySQL temporäre Tabellen erstellen muss, um Abfragen zu verarbeiten. Dies tritt normalerweise auf, wenn: 1) Deduplizierung oder Gruppierung bei Verwendung von unterschiedlichem oder gruppy; 2) Sortieren Sie, wann OrderBy Nicht-Index-Spalten enthält. 3) Verwenden Sie eine komplexe Unterabfrage oder verbinden Sie Operationen. Optimierungsmethoden umfassen: 1) OrderBy und GroupB


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

Dreamweaver CS6
Visuelle Webentwicklungstools

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.