123456789怎样运算等于1? - abccsss 的回答假定每个数字只能出现一次。
回复内容:
Mathematica代码较简洁
Det/@N@Range@9~Permutations~{9}~ArrayReshape~{9!,3,3}//Max

以上用Matlab暴力破解(枚举

<span class="n">max_det</span> <span class="p">=</span> <span class="mi">0</span><span class="p">;</span>
<span class="n">init_perm</span> <span class="p">=</span> <span class="nb">reshape</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">,</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">]);</span>
<span class="n">all_perms</span> <span class="p">=</span> <span class="nb">perms</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">);</span>
<span class="k">for</span> <span class="nb">i</span> <span class="p">=</span> <span class="mi">1</span><span class="p">:</span><span class="nb">size</span><span class="p">(</span><span class="n">all_perms</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">matrix</span> <span class="p">=</span> <span class="n">all_perms</span><span class="p">(</span><span class="nb">i</span><span class="p">,</span> <span class="p">:);</span>
<span class="n">matrix</span> <span class="p">=</span> <span class="nb">reshape</span><span class="p">(</span><span class="n">matrix</span><span class="p">,</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">]);</span>
<span class="n">det_value</span> <span class="p">=</span> <span class="n">det</span><span class="p">(</span><span class="n">matrix</span><span class="p">);</span>
<span class="k">if</span> <span class="n">det_value</span> <span class="o">></span> <span class="n">max_det</span>
<span class="n">max_det</span> <span class="p">=</span> <span class="n">det_value</span><span class="p">;</span>
<span class="n">init_perm</span> <span class="p">=</span> <span class="n">matrix</span><span class="p">;</span>
<span class="k">end</span>
<span class="k">end</span>

matrix = Partition[#, 3] & /@ list;
answer = Det /@ matrix;
m = Max[answer];
pos = Flatten[Position[answer, m]];
matrix[[#]] & /@ pos 贴个毫无技术含量暴力程度max的python版。。。
import itertools
import time
def max_matrix():
begin = time.time()
elements = [1, 2, 3, 4, 5, 6, 7, 8, 9]
maxdet = 0
maxmat = []
for i in itertools.permutations(elements, 9):
det = i[0] * i[4] * i[8] + i[1] * i[5] * i[6] + i[2] * i[3] * i[7] - i[2] * i[4] * i[6] - i[1] * i[3] * i[8] - i[0] * i[5] * i[7]
if(det > maxdet):
maxdet = det
maxmat = []
for j in range(0, 9):
maxmat.append(i[j])
print "|" + str(maxmat[0]) + " " + str(maxmat[1]) + " " + str(maxmat[2]) + "|"
print "|" + str(maxmat[3]) + " " + str(maxmat[4]) + " " + str(maxmat[5]) + "| = " + str(maxdet)
print "|" + str(maxmat[6]) + " " + str(maxmat[7]) + " " + str(maxmat[8]) + "|"
end = time.time()
print str(end - begin) + 's used.'
if __name__ == '__main__':
max_matrix()
题目应该改成1 2 3 ...n^2组成n阶行列式的最大值。并求最优解的时间复杂度才有意思。
C++:<span class="cp">#include <cstdio></span>
<span class="cp">#include <algorithm></span>
<span class="k">using</span> <span class="k">namespace</span> <span class="n">std</span><span class="p">;</span>
<span class="kt">int</span> <span class="n">ans</span><span class="p">,</span> <span class="n">a</span><span class="p">[]</span> <span class="o">=</span> <span class="p">{</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">9</span><span class="p">};</span>
<span class="kt">int</span> <span class="nf">main</span><span class="p">()</span> <span class="p">{</span>
<span class="k">do</span>
<span class="n">ans</span> <span class="o">=</span> <span class="n">max</span><span class="p">(</span><span class="n">ans</span><span class="p">,</span> <span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">a</span><span class="p">[</span><span class="mi">4</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">8</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="mi">5</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">7</span><span class="p">])</span> <span class="o">+</span>
<span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">a</span><span class="p">[</span><span class="mi">5</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">6</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">8</span><span class="p">])</span> <span class="o">+</span>
<span class="n">a</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">a</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">7</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="mi">4</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">6</span><span class="p">]));</span>
<span class="k">while</span> <span class="p">(</span><span class="n">next_permutation</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">9</span><span class="p">));</span>
<span class="n">printf</span><span class="p">(</span><span class="s">"%d</span><span class="se">\n</span><span class="s">"</span><span class="p">,</span> <span class="n">ans</span><span class="p">);</span>
<span class="p">}</span>
把yellow的答案重排一下可得9 4 2
3 8 6
5 1 7
很容易看出思路了。
1.所有数按大小在斜率为-1的对角线上依次排开。(即:987在一条对角线,654在一条,321在一条)很容易看出这是让正向数值最大的方法。
2.对于反向的对角线,排除主对角线之外的任意两个数之和相等,且乘积越大的,相应的主对角线元素越小。(也就是让三个乘积的最大值最小,然后最大的结果再和最小的数相配这样)
但是以上方法仅限于1~9的3x3矩阵,对于其它的矩阵不一定适用。
因为显然这种方法要求正向和负向都只有对角线(或平行于对角线),但是4x4的行列式就开始有拐弯了。。。
然后,我感觉还有三个漏洞,一是贪心法不一定保证正向最大,也不一定保证反向最小,更不一定保证正反向之差最大。(不一定都是漏洞,可能有的是恒成立的)
但是我感觉对3x3的非负矩阵来说,贪心在多数情况下是可以拿到最大值的。
PS:试了很多组数,都是这个解,然后又试了一组[1 2 3 4 5 6 7 8 100],显然答案发生了变化,因为100的权值比8和7大太多,所以负向的时候直接就把2和1给了100。那么这也就证明了贪心法确实有时候得不到最大值。 前面已经有了python,c和MMA的代码了,我来一发matlab的吧
<span class="n">p</span><span class="p">=</span><span class="nb">perms</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">);</span>
<span class="p">[</span><span class="n">n</span><span class="p">,</span><span class="o">~</span><span class="p">]=</span><span class="nb">size</span><span class="p">(</span><span class="n">p</span><span class="p">);</span>
<span class="n">z</span><span class="p">=</span><span class="nb">zeros</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="mi">1</span><span class="p">);</span>
<span class="k">for</span> <span class="nb">i</span><span class="p">=</span><span class="mi">1</span><span class="p">:</span><span class="n">n</span>
<span class="n">z</span><span class="p">(</span><span class="nb">i</span><span class="p">)=</span><span class="n">det</span><span class="p">(</span><span class="nb">reshape</span><span class="p">(</span><span class="n">p</span><span class="p">(</span><span class="nb">i</span><span class="p">,:),</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">));</span>
<span class="k">end</span>
<span class="n">max</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
<span class="n">id</span><span class="p">=</span><span class="nb">find</span><span class="p">(</span><span class="n">z</span><span class="o">==</span><span class="n">max</span><span class="p">(</span><span class="n">z</span><span class="p">));</span>
<span class="k">for</span> <span class="nb">i</span><span class="p">=</span><span class="mi">1</span><span class="p">:</span><span class="nb">length</span><span class="p">(</span><span class="n">id</span><span class="p">)</span>
<span class="nb">disp</span><span class="p">(</span><span class="nb">reshape</span><span class="p">(</span><span class="n">p</span><span class="p">(</span><span class="n">id</span><span class="p">(</span><span class="nb">i</span><span class="p">),:),</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">));</span>
<span class="k">end</span>
对于三阶的穷举,可以不用det函数会比较简单:<span class="n">p</span> <span class="p">=</span> <span class="nb">reshape</span><span class="p">(</span><span class="nb">perms</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">),</span><span class="s">''</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">);</span>
<span class="n">M</span> <span class="p">=</span> <span class="n">max</span><span class="p">(</span><span class="n">sum</span><span class="p">(</span><span class="n">prod</span><span class="p">(</span><span class="n">p</span><span class="p">,</span><span class="mi">2</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span><span class="o">-</span><span class="n">sum</span><span class="p">(</span><span class="n">prod</span><span class="p">(</span><span class="n">p</span><span class="p">,</span><span class="mi">3</span><span class="p">),</span><span class="mi">2</span><span class="p">));</span>
话题的语言还少个Mathematica,就我来吧直接9!个结果存下来刚正面,0优化
Det[Partition[#, 3]] & /@ Permutations[Range[9]] // Max
412

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

Atom编辑器mac版下载
最流行的的开源编辑器

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

WebStorm Mac版
好用的JavaScript开发工具