可以是字符的,也可以是图形的
相关问题如何用C语言画一个“圣诞树”? - 编程
回复内容:
我只是搬运http://codegolf.stackexchange.com上的答案,原作者是Silvia (@Silvia ),用的是Mathematica。PD = .5;
s[t_, f_] := t^.6 - f
dt[cl_, ps_, sg_, hf_, dp_, f_, flag_] :=
Module[{sv, basePt},
{PointSize[ps],
sv = s[t, f];
Hue[cl (1 + Sin[.02 t])/2, 1, .3 + sg .3 Sin[hf sv]],
basePt = {-sg s[t, f] Sin[sv], -sg s[t, f] Cos[sv], dp + sv};
Point[basePt],
If[flag,
{Hue[cl (1 + Sin[.1 t])/2, 1, .6 + sg .4 Sin[hf sv]], PointSize[RandomReal[.01]],
Point[basePt + 1/2 RotationTransform[20 sv, {-Cos[sv], Sin[sv], 0}][{Sin[sv], Cos[sv], 0}]]},
{}]
}]
frames = ParallelTable[
Graphics3D[Table[{
dt[1, .01, -1, 1, 0, f, True], dt[.45, .01, 1, 1, 0, f, True],
dt[1, .005, -1, 4, .2, f, False], dt[.45, .005, 1, 4, .2, f, False]},
{t, 0, 200, PD}],
ViewPoint -> Left, BoxRatios -> {1, 1, 1.3},
ViewVertical -> {0, 0, -1},
ViewCenter -> {{0.5, 0.5, 0.5}, {0.5, 0.55}}, Boxed -> False,
PlotRange -> {{-20, 20}, {-20, 20}, {0, 20}}, Background -> Black],
{f, 0, 1, .01}];
Export["tree.gif", frames]
Mathematica版本:打开一个notebook,然后长按CTRL+/,效果如下:


Clear["`*"];
ifs[prob_,A_,init_,max_]:=FoldList[#2.{#[[1]],#[[2]],1}&,init,RandomChoice[prob->A,max]];
L={{{0.03,0},{0,0.1}},{{0.85,0},{0,0.85}},{{0.8,0},{0,0.8}},{{0.2,-0.08},{0.15,0.22}},{{-0.2,0.08},{0.15,0.22}},{{0.25,-0.1},{0.12,0.25}},{{-0.2,0.1},{0.12,0.2}}};
B=Map[List,{{0,0},{0,1.5},{0,1.5},{0,0.85},{0,0.85},{0,0.3},{0,0.4}},{2}];
{A,prob,init,max}={N@Join[L,B,3],{2,60,10,7,7,7,7}/100.,{0.,2.},10^5};
pts=ifs[prob,A,init,max];//AbsoluteTiming
Graphics[{{Darker@Green,PointSize@Tiny,Point@pts},{Hue@Random[],PointSize@Large,Point@#}&/@RandomChoice[pts,200]},AspectRatio->1.5]
去年用R画了圣诞树送给教定量入门的教授,改了一下Wiekvoet: Merry Christmas的代码。( 今年直接手动涂色送happy spring的卡片了,不是程序媛搞不出酷炫的东西好桑心) Wolfram Mathematica 算数学软件吧?

还有这个:

算不算抖机灵 = = 鸡汁的我


by Anselm Ivanovas
====================================
%
<span class="k">function</span> <span class="nf">christmas</span>
<span class="c">% Anselm Ivanovas, anselm.ivanovas@student.unisg.ch</span>
<span class="c">%Basically just a nice plot for some christmas fun.</span>
<span class="c">%3D Plot of a hhristmas tree with some presents and snow</span>
<span class="c">%% setup</span>
<span class="n">snow</span><span class="p">=</span><span class="mi">800</span><span class="p">;</span> <span class="c">% number of snow flakes [0 .. 5000]</span>
<span class="c">%% draw tree</span>
<span class="n">h</span><span class="p">=</span><span class="mi">0</span><span class="p">:</span><span class="mf">0.2</span><span class="p">:</span><span class="mi">25</span><span class="p">;</span> <span class="c">%vertical grid</span>
<span class="p">[</span><span class="n">X</span><span class="p">,</span><span class="n">Y</span><span class="p">,</span><span class="n">Z</span><span class="p">]</span> <span class="p">=</span> <span class="n">cylinder</span><span class="p">(</span><span class="n">tree</span><span class="p">(</span><span class="n">h</span><span class="p">));</span> <span class="c">%produce a tree formed cylinder</span>
<span class="n">Z</span><span class="p">=</span><span class="n">Z</span><span class="o">*</span><span class="mi">25</span><span class="p">;</span> <span class="c">%scale to the right heigth</span>
<span class="c">%add some diffusion to the surface of the tree to make it look more real</span>
<span class="n">treeDiffusion</span><span class="p">=</span><span class="nb">rand</span><span class="p">(</span><span class="mi">126</span><span class="p">,</span><span class="mi">21</span><span class="p">)</span><span class="o">-</span><span class="mf">0.5</span><span class="p">;</span><span class="c">%some horizontal diffusion data</span>
<span class="c">%add diffusion to the grid points</span>
<span class="k">for</span> <span class="n">cnt1</span><span class="p">=</span><span class="mi">1</span><span class="p">:</span><span class="mi">21</span>
<span class="k">for</span> <span class="n">cnt2</span><span class="p">=</span><span class="mi">16</span><span class="p">:</span><span class="mi">126</span><span class="c">%starting above the trunk</span>
<span class="c">%get the angle to always diffuse in direction of the radius</span>
<span class="nb">angle</span><span class="p">=</span><span class="nb">atan</span><span class="p">(</span><span class="n">Y</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">)</span><span class="o">/</span><span class="n">X</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">));</span>
<span class="c">%split the diffusion in the two coordinates, depending on the angle</span>
<span class="n">X</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">)=</span><span class="n">X</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">)</span><span class="o">+</span><span class="nb">cos</span><span class="p">(</span><span class="nb">angle</span><span class="p">)</span><span class="o">*</span><span class="n">treeDiffusion</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">);</span>
<span class="n">Y</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">)=</span><span class="n">Y</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">)</span><span class="o">+</span><span class="nb">sin</span><span class="p">(</span><span class="nb">angle</span><span class="p">)</span><span class="o">*</span><span class="n">treeDiffusion</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">);</span>
<span class="c">%some Vertical diffusion for each point</span>
<span class="n">Z</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">)=</span><span class="n">Z</span><span class="p">(</span><span class="n">cnt2</span><span class="p">,</span><span class="n">cnt1</span><span class="p">)</span><span class="o">+</span><span class="p">(</span><span class="nb">rand</span><span class="o">-</span><span class="mf">0.5</span><span class="p">)</span><span class="o">*</span><span class="mf">0.5</span><span class="p">;</span>
<span class="k">end</span>
<span class="k">end</span>
<span class="c">%draw the tree</span>
<span class="n">surfl</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="n">Y</span><span class="p">,</span><span class="n">Z</span><span class="p">,</span><span class="s">'light'</span><span class="p">)</span>
<span class="c">%% View and format</span>
<span class="c">%Use as nice green color map (darker at the bottom, lighter at the top)</span>
<span class="n">r</span><span class="p">=(</span><span class="mf">0.0430</span><span class="p">:(</span><span class="mf">0.2061</span><span class="o">/</span><span class="mi">50</span><span class="p">):</span><span class="mf">0.2491</span><span class="p">)</span><span class="o">'</span><span class="p">;</span><span class="c">%red component</span>
<span class="n">g</span><span class="p">=(</span><span class="mf">0.2969</span><span class="p">:(</span><span class="mf">0.4012</span><span class="o">/</span><span class="mi">50</span><span class="p">):</span><span class="mf">0.6981</span><span class="p">)</span><span class="o">'</span><span class="p">;</span><span class="c">%green component</span>
<span class="n">b</span><span class="p">=(</span><span class="mf">0.0625</span><span class="p">:(</span><span class="mf">0.2696</span><span class="o">/</span><span class="mi">50</span><span class="p">):</span><span class="mf">0.3321</span><span class="p">)</span><span class="o">'</span><span class="p">;</span><span class="c">%blue component</span>
<span class="n">map</span><span class="p">=[</span><span class="n">r</span><span class="p">,</span><span class="n">g</span><span class="p">,</span><span class="n">b</span><span class="p">];</span><span class="c">%join in a map</span>
<span class="k">for</span> <span class="n">cnt</span><span class="p">=</span><span class="mi">1</span><span class="p">:</span><span class="mi">6</span>
<span class="c">%change the lower part to brown for the trunk</span>
<span class="n">map</span><span class="p">(</span><span class="n">cnt</span><span class="p">,:)=[</span><span class="mi">77</span><span class="p">,</span><span class="mi">63</span><span class="p">,</span><span class="mi">5</span><span class="p">]</span><span class="o">/</span><span class="mi">265</span><span class="p">;</span>
<span class="k">end</span>
<span class="n">colormap</span><span class="p">(</span><span class="n">map</span><span class="p">)</span><span class="c">%set the map</span>
<span class="n">view</span><span class="p">([</span><span class="o">-</span><span class="mf">37.5</span><span class="p">,</span><span class="mi">4</span><span class="p">])</span><span class="c">%Change the view to see a little more of the Actual 3D tree</span>
<span class="n">lighting</span> <span class="n">phong</span> <span class="c">%some nice lighting</span>
<span class="n">shading</span> <span class="n">interp</span> <span class="c">%remove grid and smoothen the surface color</span>
<span class="n">axis</span> <span class="n">equal</span> <span class="c">%takes care of display in the right proportion</span>
<span class="n">axis</span><span class="p">([</span><span class="o">-</span><span class="mi">10</span> <span class="mi">10</span> <span class="o">-</span><span class="mi">10</span> <span class="mi">10</span> <span class="mi">0</span> <span class="mi">30</span><span class="p">])</span> <span class="c">%give some more axis space (for the snow later)</span>
<span class="n">axis</span> <span class="n">off</span> <span class="c">%but don't show axis</span>
<span class="n">hold</span> <span class="n">on</span> <span class="c">%to draw the rest</span>
<span class="n">title</span><span class="p">(</span><span class="s">'Merry Christmas 知乎er'</span><span class="p">)</span><span class="c">%self explaining</span>
<span class="c">%% Presents</span>
<span class="c">%Draw some presents around the tree (each with random color)</span>
<span class="n">drawPresent</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">2</span><span class="p">);</span>
<span class="n">drawPresent</span><span class="p">(</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mf">1.5</span><span class="p">);</span>
<span class="n">drawPresent</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">);</span>
<span class="n">drawPresent</span><span class="p">(</span><span class="o">-</span><span class="mi">14</span><span class="p">,</span><span class="o">-</span><span class="mi">5</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">);</span>
<span class="n">drawPresent</span><span class="p">(</span><span class="o">-</span><span class="mi">9</span><span class="p">,</span><span class="o">-</span><span class="mi">10</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">);</span>
<span class="n">drawPresent</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">);</span>
<span class="n">drawPresent</span><span class="p">(</span><span class="o">-</span><span class="mi">6</span><span class="p">,</span><span class="o">-</span><span class="mi">13</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">);</span>
<span class="c">%% Snow</span>
<span class="c">%create some random 3D coordinates for the snow (amount as in setup above)</span>
<span class="n">snowX</span><span class="p">=(</span><span class="nb">rand</span><span class="p">(</span><span class="n">snow</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="o">*</span><span class="mi">25</span><span class="o">-</span><span class="mf">12.5</span><span class="p">);</span>
<span class="n">snowY</span><span class="p">=(</span><span class="nb">rand</span><span class="p">(</span><span class="n">snow</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="o">*</span><span class="mi">25</span><span class="o">-</span><span class="mf">12.5</span><span class="p">);</span>
<span class="n">snowZ</span><span class="p">=(</span><span class="nb">rand</span><span class="p">(</span><span class="n">snow</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="o">*</span><span class="mi">27</span><span class="p">);</span>
<span class="c">%Note:Some flakes will end up IN the tree but just can't be seen then</span>
<span class="n">plot3</span><span class="p">(</span><span class="n">snowX</span><span class="p">,</span><span class="n">snowY</span><span class="p">,</span><span class="n">snowZ</span><span class="p">,</span><span class="s">'w*'</span><span class="p">)</span><span class="c">%plot coordinates as white snow flakes</span>
<span class="n">hold</span> <span class="n">off</span><span class="c">%Done</span>
<span class="k">end</span> <span class="c">% of function</span>
<span class="c">%% ============= private functions</span>
<span class="k">function</span><span class="w"> </span>r<span class="p">=</span><span class="nf">tree</span><span class="p">(</span>h<span class="p">)</span><span class="c">%Gives a profile for the tree</span>
<span class="k">for</span> <span class="n">cnt</span><span class="p">=</span><span class="mi">1</span><span class="p">:</span><span class="nb">length</span><span class="p">(</span><span class="n">h</span><span class="p">)</span>
<span class="k">if</span><span class="p">(</span><span class="n">h</span><span class="p">(</span><span class="n">cnt</span><span class="p">)</span><span class="o">==</span><span class="mi">0</span><span class="p">)</span><span class="c">%no Width at the bottom. Ensures a "closed" trunk</span>
<span class="n">r</span><span class="p">(</span><span class="n">cnt</span><span class="p">)=</span><span class="mi">0</span><span class="p">;</span>
<span class="k">end</span>
<span class="c">%smaller radius for the trunk</span>
<span class="k">if</span> <span class="p">(</span><span class="n">h</span><span class="p">(</span><span class="n">cnt</span><span class="p">)</span><span class="o">></span><span class="mi">0</span> <span class="o">&&</span> <span class="n">h</span><span class="p">(</span><span class="n">cnt</span><span class="p">)</span><span class="o"><</span><span class="p">=</span><span class="mi">3</span><span class="p">)</span>
<span class="n">r</span><span class="p">(</span><span class="n">cnt</span><span class="p">)=</span><span class="mf">1.5</span><span class="p">;</span>
<span class="k">end</span>
<span class="c">%reduce radius gradually from 8 to 0. Note: will only work with a trunk heigth</span>
<span class="c">%of 3 and a whole tree heigth of 25. Scale the height of the tree in</span>
<span class="c">%the "draw tree" section, since the cylinder command will return a 1</span>
<span class="c">%unit high cylinder anyway</span>
<span class="k">if</span><span class="p">(</span><span class="n">h</span><span class="p">(</span><span class="n">cnt</span><span class="p">)</span><span class="o">></span><span class="mi">3</span><span class="p">)</span>
<span class="n">r</span><span class="p">(</span><span class="n">cnt</span><span class="p">)=</span><span class="mi">8</span><span class="o">-</span><span class="p">(</span><span class="n">h</span><span class="p">(</span><span class="n">cnt</span><span class="p">)</span><span class="o">-</span><span class="mi">3</span><span class="p">)</span><span class="o">*</span><span class="mf">0.3636</span><span class="p">;</span>
<span class="k">end</span>
<span class="k">end</span>
<span class="k">end</span> <span class="c">% of function</span>
<span class="c">%Draws a present with the given coordinate + size in a random color</span>
<span class="c">%Note:Given coordinates apply to the lower front + left corner of the</span>
<span class="c">%present (the one closest to the viewer) as seen in the plot</span>
<span class="k">function</span><span class="w"> </span><span class="nf">drawPresent</span><span class="p">(</span>dx,dy,dz,scalex,scaley,scalez<span class="p">)</span><span class="w"></span>
<span class="c">%the standard present coordinates</span>
<span class="n">presentX</span><span class="p">=[</span><span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span><span class="p">;</span> <span class="mi">0</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">0</span> <span class="mi">0</span><span class="p">;</span> <span class="mi">0</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">0</span> <span class="mi">0</span><span class="p">;</span> <span class="mi">0</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">0</span> <span class="mi">0</span><span class="p">;</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span><span class="p">];</span>
<span class="n">presentY</span><span class="p">=[</span><span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span><span class="p">;</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">0</span><span class="p">;</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">0</span><span class="p">;</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">0</span><span class="p">;</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span><span class="p">];</span>
<span class="n">presentZ</span><span class="p">=[</span><span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span><span class="p">;</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span><span class="p">;</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span> <span class="mf">0.5</span><span class="p">;</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">1</span><span class="p">;</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">1</span> <span class="mi">1</span><span class="p">];</span>
<span class="c">%draw some presents with random colors</span>
<span class="c">%scale present and move it to the right place and get the plot handle</span>
<span class="n">myHandle</span><span class="p">=</span><span class="n">surf</span><span class="p">((</span><span class="n">presentX</span><span class="o">*</span><span class="n">scalex</span><span class="o">+</span><span class="n">dx</span><span class="p">),(</span><span class="n">presentY</span><span class="o">*</span><span class="n">scaley</span><span class="o">+</span><span class="n">dy</span><span class="p">),</span> <span class="p">(</span><span class="n">presentZ</span><span class="o">*</span><span class="n">scalez</span><span class="o">+</span><span class="n">dz</span><span class="p">));</span>
<span class="c">%some random color map</span>
<span class="n">randColorMap</span><span class="p">(:,:,</span><span class="mi">1</span><span class="p">)=</span><span class="nb">repmat</span><span class="p">(</span><span class="nb">rand</span><span class="p">,[</span><span class="mi">5</span><span class="p">,</span><span class="mi">5</span><span class="p">]);</span><span class="c">%r component</span>
<span class="n">randColorMap</span><span class="p">(:,:,</span><span class="mi">2</span><span class="p">)=</span><span class="nb">repmat</span><span class="p">(</span><span class="nb">rand</span><span class="p">,[</span><span class="mi">5</span><span class="p">,</span><span class="mi">5</span><span class="p">]);</span><span class="c">%g component</span>
<span class="n">randColorMap</span><span class="p">(:,:,</span><span class="mi">3</span><span class="p">)=</span><span class="nb">repmat</span><span class="p">(</span><span class="nb">rand</span><span class="p">,[</span><span class="mi">5</span><span class="p">,</span><span class="mi">5</span><span class="p">]);</span><span class="c">%b component</span>
<span class="c">%Assign colormap just to the plot handle object of the present, so the tree</span>
<span class="c">%does not change color</span>
<span class="n">set</span><span class="p">(</span><span class="n">myHandle</span><span class="p">,</span><span class="s">'CData'</span><span class="p">,</span><span class="n">randColorMap</span><span class="p">)</span>
<span class="n">shading</span> <span class="n">interp</span> <span class="c">%Nice shding + without grid</span>
<span class="k">end</span> <span class="c">% of function</span>
Christmas TreeR语言 能画,但是这种比较有什么意义呢..................................

<span class="go">L <- matrix(</span>
<span class="go"> c(0.03, 0, 0 , 0.1,</span>
<span class="go"> 0.85, 0.00, 0.00, 0.85,</span>
<span class="go"> 0.8, 0.00, 0.00, 0.8,</span>
<span class="go"> 0.2, -0.08, 0.15, 0.22,</span>
<span class="go"> -0.2, 0.08, 0.15, 0.22,</span>
<span class="go"> 0.25, -0.1, 0.12, 0.25,</span>
<span class="go"> -0.2, 0.1, 0.12, 0.2),</span>
<span class="go"> nrow=4)</span>
<span class="go"># ... and each row is a translation vector</span>
<span class="go">B <- matrix(</span>
<span class="go"> c(0, 0,</span>
<span class="go"> 0, 1.5,</span>
<span class="go"> 0, 1.5,</span>
<span class="go"> 0, 0.85,</span>
<span class="go"> 0, 0.85,</span>
<span class="go"> 0, 0.3,</span>
<span class="go"> 0, 0.4),</span>
<span class="go"> nrow=2)</span>
<span class="go">prob = c(0.02, 0.6,.08, 0.07, 0.07, 0.07, 0.07)</span>
<span class="go"># Iterate the discrete stochastic map </span>
<span class="go">N = 1e5 #5 # number of iterations </span>
<span class="go">x = matrix(NA,nrow=2,ncol=N)</span>
<span class="go">x[,1] = c(0,2) # initial point</span>
<span class="go">k <- sample(1:7,N,prob,replace=TRUE) # values 1-7 </span>
<span class="go">for (i in 2:N) </span>
<span class="go"> x[,i] = crossprod(matrix(L[,k[i]],nrow=2),x[,i-1]) + B[,k[i]] # iterate </span>
<span class="go"># Plot the iteration history </span>
<span class="go">png('card.png')</span>
<span class="go">par(bg='darkblue',mar=rep(0,4)) </span>
<span class="go">plot(x=x[1,],y=x[2,],</span>
<span class="go"> col=grep('green',colors(),value=TRUE),</span>
<span class="go"> axes=FALSE,</span>
<span class="go"> cex=.1,</span>
<span class="go"> xlab='',</span>
<span class="go"> ylab='' )#,pch='.')</span>
<span class="go">bals <- sample(N,20)</span>
<span class="go">points(x=x[1,bals],y=x[2,bals]-.1,</span>
<span class="go"> col=c('red','blue','yellow','orange'),</span>
<span class="go"> cex=2,</span>
<span class="go"> pch=19</span>
<span class="go">)</span>
<span class="go">text(x=-.7,y=8,</span>
<span class="go"> labels='Merry',</span>
<span class="go"> adj=c(.5,.5),</span>
<span class="go"> srt=45,</span>
<span class="go"> vfont=c('script','plain'),</span>
<span class="go"> cex=3,</span>
<span class="go"> col='gold'</span>
<span class="go">)</span>
<span class="go">text(x=0.7,y=8,</span>
<span class="go"> labels='Christmas',</span>
<span class="go"> adj=c(.5,.5),</span>
<span class="go"> srt=-45,</span>
<span class="go"> vfont=c('script','plain'),</span>
<span class="go"> cex=3,</span>
<span class="go"> col='gold'</span>
<span class="go">)</span>
<span class="go">dev.off()</span>

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3汉化版
中文版,非常好用