搜索
首页后端开发Python教程python使用心得之获得github代码库列表

1.背景

项目需求,要求获得github的repo的api,以便可以提取repo的数据进行分析。研究了一天,终于解决了这个问题,虽然效率还是比较低下。

因为github的那个显示repo的api,列出了每个repo的详细信息,而且是json格式的。现在貌似还没有找到可以分析多个json格式数据的方法,所以用的是比较蠢得splite加re的方法。如果大家有更好的方法,不发留言讨论!

2.代码

import re
import os

def GetUrl(num):
 str = os.popen("curl -G https://api.github.com/repositories?since=%d"%(num)).read()
 pattern = '"url"'
 pattern1='repos'
 urls=str.split(',\n')  
 for i in urls:
  if pattern in i and pattern1 in i:   
#  text1=i.splite(':')
  text=re.compile('"(.*?)"').findall(i)[1]
  print text
if __name__=='__main__':
 GetUrl(1000)

    其中num的值指的是页面的id,我们可以做一个循环,不断增大num的值,就可以无限提取repo。因为github的api对于流量是有限制的,所以这么做是一个可行的方法。

效果如下(提取下来的repo的api地址):

https://api.github.com/repos/wycats/merb-core

https://api.github.com/repos/rubinius/rubinius

https://api.github.com/repos/mojombo/god

https://api.github.com/repos/vanpelt/jsawesome

https://api.github.com/repos/wycats/jspec

https://api.github.com/repos/defunkt/exception_logger

https://api.github.com/repos/defunkt/ambition

https://api.github.com/repos/technoweenie/restful-authentication

https://api.github.com/repos/technoweenie/attachment_fu

https://api.github.com/repos/topfunky/bong

https://api.github.com/repos/Caged/microsis

https://api.github.com/repos/anotherjesse/s3

https://api.github.com/repos/anotherjesse/taboo

https://api.github.com/repos/anotherjesse/foxtracs

https://api.github.com/repos/anotherjesse/fotomatic

https://api.github.com/repos/mojombo/glowstick

https://api.github.com/repos/defunkt/starling

https://api.github.com/repos/wycats/merb-more

https://api.github.com/repos/macournoyer/thin

https://api.github.com/repos/jamesgolick/resource_controller

https://api.github.com/repos/jamesgolick/markaby

https://api.github.com/repos/jamesgolick/enum_field

https://api.github.com/repos/defunkt/subtlety

https://api.github.com/repos/defunkt/zippy

https://api.github.com/repos/defunkt/cache_fu

https://api.github.com/repos/KirinDave/phosphor

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
在Python阵列上可以执行哪些常见操作?在Python阵列上可以执行哪些常见操作?Apr 26, 2025 am 12:22 AM

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

在哪些类型的应用程序中,Numpy数组常用?在哪些类型的应用程序中,Numpy数组常用?Apr 26, 2025 am 12:13 AM

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

您什么时候选择在Python中的列表上使用数组?您什么时候选择在Python中的列表上使用数组?Apr 26, 2025 am 12:12 AM

useanArray.ArarayoveralistinpythonwhendeAlingwithHomeSdata,performance-Caliticalcode,orinterFacingWithCcccode.1)同质性data:arrayssavememorywithtypedelements.2)绩效code-performance-clitionalcode-clitadialcode-critical-clitical-clitical-clitical-clitaine code:araysofferferbetterperperperformenterperformanceformanceformancefornalumericalicalialical.3)

所有列表操作是否由数组支持,反之亦然?为什么或为什么不呢?所有列表操作是否由数组支持,反之亦然?为什么或为什么不呢?Apr 26, 2025 am 12:05 AM

不,notalllistoperationsareSupportedByArrays,andviceversa.1)arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,wheremactssperformance.2)listssdonotguaranteeconeeconeconstanttanttanttanttanttanttanttanttimecomplecomecomecomplecomecomecomecomecomecomplecomectaccesslikearrikearraysodo。

您如何在python列表中访问元素?您如何在python列表中访问元素?Apr 26, 2025 am 12:03 AM

toAccesselementsInapythonlist,useIndIndexing,负索引,切片,口头化。1)indexingStartSat0.2)否定indexingAccessesessessessesfomtheend.3)slicingextractsportions.4)iterationerationUsistorationUsisturessoreTionsforloopsoreNumeratorseforeporloopsorenumerate.alwaysCheckListListListListlentePtotoVoidToavoIndexIndexIndexIndexIndexIndExerror。

Python的科学计算中如何使用阵列?Python的科学计算中如何使用阵列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何处理同一系统上的不同Python版本?您如何处理同一系统上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通过使用pyenv、venv和Anaconda来管理不同的Python版本。1)使用pyenv管理多个Python版本:安装pyenv,设置全局和本地版本。2)使用venv创建虚拟环境以隔离项目依赖。3)使用Anaconda管理数据科学项目中的Python版本。4)保留系统Python用于系统级任务。通过这些工具和策略,你可以有效地管理不同版本的Python,确保项目顺利运行。

与标准Python阵列相比,使用Numpy数组的一些优点是什么?与标准Python阵列相比,使用Numpy数组的一些优点是什么?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基于基于duetoc的iMplation,2)2)他们的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函数函数函数函数构成和稳定性构成和稳定性的操作,制造

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具