第一章 介绍
脚本语言是类似DOS批处理、UNIX shell程序的语言。脚本语言不需要每次编译再执行,并且在执行中可以很容易地访问正在运行的程序,甚至可以动态地修改正在运行的程序,适用于快速地开发以及完成一些简单的任务。在使用脚本语言时常常需要增的新的功能,但有时因为脚本语言本来就已经很慢、很大、很复杂了而不能实现;或者,所需的功能涉及只能用C语言提供的系统调用或其他函数——通常所要解决的问题没有重要到必须用C语言重写的程度;或者,解决问题需要诸如可变长度字符串等数据类型(如文件名的有序列表),这样的数据类型在脚本语言中十分容易而C语言则需要很多工作才能实现;或者,编程者不熟悉C语言:这些情况下还是可以使用脚本语言的。
在这样的情况下,Python可能正好适合你的需要。Python使用简单,但它是一个真正的程序语言,而且比shell提供了更多结构和对大型程序的支持。另一方面,它比C提供更多的错误检查,它是一个非常高级的语言,内置了各种高级数据结构,如灵活的数组和字典,这些数据结构要用C高效实现的话可能要花费你几天的时间。由于Python具有更一般的数据结构,它比Awk甚至Perl适用的范围都广,而许多东西在Python内至少和在这些语言内一样容易。
Python允许你把程序分解为模块,模块可以在其他Python程序中重用。它带有一大批标准模块可以作为你自己的程序的基础——或作为学习Python编程的例子。系统还提供了关于文件输入输出、系统调用、插座(sockets)的东西,甚至提供了窗口系统(STDWIN)的通用接口。
Python是一个解释性语言,因为不需要编译和连接所以能节省大量的程序开发时间。解释程序可以交互使用,这样可以可以很容易地试验语言的各种特色,写只用一次的程序,或在从底向上程序开发中测试函数。它也是一个方便的计算器。
Python允许你写出非常严谨而且可读的程序。用Python写的程序通常都比相应的C程序要短,因为如下几个理由:
高级的数据结构允许你用一个语句表达复杂的操作;
复合语句是靠缩进而不是用表示开始和结束的括号;
不需要变量声明或参量声明。
Python是可扩充的:如果你会用C语言编程就很容易为解释程序增加新的内置函数或模块,这样可以以最快速度执行关键操作,或把Python程序和只能以二进制码提供的库(如不同厂商提供的图形库)连接起来。当你变得确实很在行时你可以把Python解释器与用C写的应用相连接,把它作为该应用的扩展或命令语言。
Python的命名是由BBC的“Monty Python's Flying Circus”节目而得,与蟒蛇没有什么关系。

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver Mac版
视觉化网页开发工具

SublimeText3汉化版
中文版,非常好用

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中