本文实例讲述了Python实现的数据结构与算法之快速排序。分享给大家供大家参考。具体分析如下:
一、概述
快速排序(quick sort)是一种分治排序算法。该算法首先 选取 一个划分元素(partition element,有时又称为pivot);接着重排列表将其 划分 为三个部分:left(小于划分元素pivot的部分)、划分元素pivot、right(大于划分元素pivot的部分),此时,划分元素pivot已经在列表的最终位置上;然后分别对left和right两个部分进行 递归排序。
其中,划分元素的 选取 直接影响到快速排序算法的效率,通常选择列表的第一个元素或者中间元素或者最后一个元素作为划分元素,当然也有更复杂的选择方式;划分 过程根据划分元素重排列表,是快速排序算法的关键所在,该过程的原理示意图如下:
快速排序算法的优点是:原位排序(只使用很小的辅助栈),平均情况下的时间复杂度为 O(n log n)。快速排序算法的缺点是:它是不稳定的排序算法,最坏情况下的时间复杂度为 O(n2)。
二、Python实现
1、标准实现
#!/usr/bin/env python # -*- coding: utf-8 -*- def stdQuicksort(L): qsort(L, 0, len(L) - 1) def qsort(L, first, last): if first < last: split = partition(L, first, last) qsort(L, first, split - 1) qsort(L, split + 1, last) def partition(L, first, last): # 选取列表中的第一个元素作为划分元素 pivot = L[first] leftmark = first + 1 rightmark = last while True: while L[leftmark] <= pivot: # 如果列表中存在与划分元素pivot相等的元素,让它位于left部分 # 以下检测用于划分元素pivot是列表中的最大元素时, #防止leftmark越界 if leftmark == rightmark: break leftmark += 1 while L[rightmark] > pivot: # 这里不需要检测,划分元素pivot是列表中的最小元素时, # rightmark会自动停在first处 rightmark -= 1 if leftmark < rightmark: # 此时,leftmark处的元素大于pivot, #而rightmark处的元素小于等于pivot,交换二者 L[leftmark], L[rightmark] = L[rightmark], L[leftmark] else: break # 交换first处的划分元素与rightmark处的元素 L[first], L[rightmark] = L[rightmark], L[first] # 返回划分元素pivot的最终位置 return rightmark
2、Pythonic实现
#!/usr/bin/env python # -*- coding: utf-8 -*- def pycQuicksort(L): if len(L) <= 1: return L return pycQuicksort([x for x in L if x < L[0]]) + \ [x for x in L if x == L[0]] + \ pycQuicksort([x for x in L if x > L[0]])
对比 标准实现 可以看出,Pythonic实现 更简洁、更直观、更酷。但需要指出的是,Pythonic实现 使用了Python中的 列表解析 (List Comprehension,也叫列表展开、列表推导),每一次 递归排序 都会产生新的列表,因此失去了快速排序算法本来的 原位排序 的优点。
三、算法测试
#!/usr/bin/env python # -*- coding: utf-8 -*- if __name__ == '__main__': L = [54, 26, 93, 17, 77, 31, 44, 55, 20] M = L[:] print('before stdQuicksort: ' + str(L)) stdQuicksort(L) print('after stdQuicksort: ' + str(L)) print('before pycQuicksort: ' + str(M)) print('after pycQuicksort: ' + str(pycQuicksort(M)))
运行结果:
$ python testquicksort.py before stdQuicksort: [54, 26, 93, 17, 77, 31, 44, 55, 20] after stdQuicksort: [17, 20, 26, 31, 44, 54, 55, 77, 93] before pycQuicksort: [54, 26, 93, 17, 77, 31, 44, 55, 20] after pycQuicksort: [17, 20, 26, 31, 44, 54, 55, 77, 93]
希望本文所述对大家的Python程序设计有所帮助。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

禅工作室 13.0.1
功能强大的PHP集成开发环境

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。