搜索
首页后端开发Python教程详解Python中的文本处理

字符串 -- 不可改变的序列

如同大多数高级编程语言一样,变长字符串是 Python 中的基本类型。Python 在“后台”分配内存以保存字符串(或其它值),程序员不必为此操心。Python 还有一些其它高级语言没有的字符串处理功能。

在 Python 中,字符串是“不可改变的序列”。尽管不能“按位置”修改字符串(如字节组),但程序可以引用字符串的元素或子序列,就象使用任何序列一样。Python 使用灵活的“分片”操作来引用子序列,字符片段的格式类似于电子表格中一定范围的行或列。以下交互式会话说明了字符串和字符片段的的用法:
字符串和分片

>>> s = 
    "mary had a little lamb"
>>> s[0] 
    # index is zero-based

    'm'
>>> s[3] = 
    'x' 
    # changing element in-place fails
Traceback (innermost last):
 File 
    "<stdin>", line 1, 
    in
     &#63;
TypeError: object doesn't support item assignment
>>> s[11:18] 
    # 'slice' a subsequence

    'little '
>>> s[:4] 
    # empty slice-begin assumes zero

    'mary'
>>> s[4] 
    # index 4 is not included in slice [:4]

    ' '
>>> s[5:-5] 
    # can use "from end" index with negatives

    'had a little'
>>> s[:5]+s[5:] 
    # slice-begin & slice-end are complimentary

    'mary had a little lamb'

另一个功能强大的字符串操作就是简单的 in 关键字。它提供了两个直观有效的构造:
in 关键字

>>> s = 
    "mary had a little lamb"
>>> 
    for
     c 
    in
     s[11:18]: 
    print
     c, 
    # print each char in slice
...
l i t t l e
>>> 
    if
    'x' 
    in
     s: 
    print
    'got x' 
    # test for char occurrence
...
>>> 
    if
    'y' 
    in
     s: 
    print
    'got y' 
    # test for char occurrence
...
got y

在 Python 中,有几种方法可以构成字符串文字。可以使用单引号或双引号,只要左引号和右引号匹配,常用的还有其它引号的变化形式。如果字符串包含换行符或嵌入引号,三重引号可以很方便地定义这样的字符串,如下例所示:
三重引号的使用

>>> s2 = 
    """Mary had a little lamb
... its fleece was white as snow
... and everywhere that Mary went
... the lamb was sure to go"""
>>> 
    print
     s2
Mary had a little lamb
its fleece was white as snow
    and
     everywhere that Mary went
the lamb was sure to go

使用单引号或三重引号的字符串前面可以加一个字母 "r" 以表示 Python 不应该解释规则表达式特殊字符。例如:
使用 "r-strings"

>>> s3 = 
    "this \n and \n that"
>>> 
    print
     s3
this
    and

    that
>>> s4 = r
    "this \n and \n that"
>>> 
    print
     s4
this \n 
    and
     \n that

在 "r-strings" 中,可能另外组成换码符的反斜杠被当作是常规反斜杠。在以后的规则表达式讨论中会进一步说明这个话题。

文件和字符串变量

我们谈到“文本处理”时,我们通常是指处理的内容。Python 将文本文件的内容读入可以操作的字符串变量非常容易。文件对象提供了三个“读”方法: .read()、.readline() 和 .readlines()。每种方法可以接受一个变量以限制每次读取的数据量,但它们通常不使用变量。 .read() 每次读取整个文件,它通常用于将文件内容放到一个字符串变量中。然而 .read() 生成文件内容最直接的字符串表示,但对于连续的面向行的处理,它却是不必要的,并且如果文件大于可用内存,则不可能实现这种处理。

.readline() 和 .readlines() 非常相似。它们都在类似于以下的结构中使用:
Python .readlines() 示例

    fh = open(
    'c:\\autoexec.bat')
    for
     line 
    in
     fh.readlines():
 
    print
     line

.readline() 和 .readlines() 之间的差异是后者一次读取整个文件,象 .read() 一样。.readlines() 自动将文件内容分析成一个行的列表,该列表可以由 Python 的 for ... in ... 结构进行处理。另一方面,.readline() 每次只读取一行,通常比 .readlines() 慢得多。仅当没有足够内存可以一次读取整个文件时,才应该使用 .readline()。

如果正在使用处理文件的标准模块,可以使用 cStringIO 模块将字符串转换成“虚拟文件”(如果需要生成模块的子类,可以使用 StringIO 模块,初学者未必要这样做)。例如:
cStringIO 模块

>>> 
    import
     cStringIO
>>> fh = cStringIO.StringIO()
>>> fh.write(
    "mary had a little lamb")
>>> fh.getvalue()
    'mary had a little lamb'
>>> fh.seek(5)
>>> fh.write(
    'ATE')
>>> fh.getvalue()
    'mary ATE a little lamb'

但是,请记住,cStringIO“虚拟文件”不是永久的,这一点与真正的文件不同。如果不保存它(如将它写入一个真正的文件,或者使用 shelve 模块或数据库),则程序结束时,它将消失。

标准模块:string

string 模块也许是 Python 1.5.* 标准发行版中最常用的模块。实际上,在 Python 1.6 或更高版本中,string 模块中的功能将作为内置字符串方法(在撰写本文时,详细信息尚未发布)。当然,任何执行文本处理任务的程序也许应该用以下这行开头:
开始使用 string 的方法

      import string

一般经验法则告诉我们,如果 可以 使用 string 模块完成任务,那么那就是 正确 的方法。与 re(规则表达式)相比,string 函数通常更快速,大多数情况下他们更易于理解和维护。第三方 Python 模块,包括某些用 C 编写的快速模块,适用于专门的任务,但可移植性和熟悉性都建议只要可能就使用 string。如果您习惯于使用其它语言,也会有例外,但不如您想像的那样多。

string 模块包含了几种类型的事物,如函数、方法和类;它还包含了公共常量的字符串。例如:
string 用法例 1

>>> 
    import
     string
>>> string.whitespace
    '\011\012\013\014\015 '
>>> string.uppercase
    'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

虽然可以用手写出这些常量,string 版本或多或少确保了常量对于运行 Python 脚本的国家语言和平台将是正确的。

string 还包括了以常见方式(可以结合这些方式来构成几种罕见的转换)转换字符串的函数。例如:
string 用法例 2

>>> 
    import
     string
>>> s = 
    "mary had a little lamb"
>>> string.capwords(s)
    'Mary Had A Little Lamb'
>>> string.replace(s, 
    'little', 
    'ferocious')
    'mary had a ferocious lamb'

还有许多没有在这里具体说明的其它转换;可以在 Python 手册中查找详细信息。

还可以使用 string 函数来报告字符串属性,如子串的长度或位置,例如:
string 用法例 3

>>> 
    import
     string
>>> s = 
    "mary had a little lamb"
>>> string.find(s, 
    'had')5>>> string.count(s, 
    'a')4

最后,string 提供了非常 Python 化的奇特事物。.split() 和 .join() 对提供了在字符串和字节组之间转换的迅捷方法,您会发现它们非常有用。用法很简单:
string 用法例 4

>>> 
    import
     string>>> s = 
    "mary had a little lamb"
>>> L = string.split(s)
>>> L
[
    'mary', 
    'had', 
    'a', 
    'little', 
    'lamb']
>>> string.join(L, 
    "-")
    'mary-had-a-little-lamb'

当然,除了 .join() 之外,也许会利用列表来做其它事(如某些涉及我们熟悉的 for ... in ... 结构的事情)。

标准模块:re

re 模块废弃了在老的 Python 代码中使用的 regex 和 regsub 模块。虽然相对于 regex 仍然有几个有限的优点,不过这些优点微不足道,不值得在新代码中使用。过时的模块可能会从未来的 Python 发行版中删除,并且 1.6 版可能有一个改进的接口兼容的 re 模块。所以,规则表达式仍将使用 re 模块。

规则表达式很复杂。也许有人会撰写关于这个主题的书,但实际上,已经有许多人这样做了!本文尝试捕捉规则表达式的“完全形态”,让读者可以掌握它。

规则表达式是一种很简练方法,用于描述可能在文本中出现的模式。是否会出现某些字符?是否按特定顺序出现?子模式是否会重复一定次数?其它子模式是否会排除在匹配之外?从概念上说,似乎不能用自然语言了直观地描述模式。诀窍是使用规则表达式的简洁语法来编码这种描述。

当处理规则表达式时,将它作为它自己的编程问题来处理,即使只涉及一或两行代码;这些行有效地构成了一个小程序。

从最小处着手。从最基本上看,任何规则表达式都涉及匹配特定的“字符类”。最简单的字符类就是单个字符,它在模式中只是一个字。通常,您希望匹配一类字符。可以通过将类括在方括号内来表明这是一个类;在括号中,可以有一组字符或者用破折号指定的字符范围。还可以使用许多命名字符类来确定您的平台和国家语言。以下是一些示例:
字符类

>>> 
    import
     re
>>> s = 
    "mary had a little lamb"
>>> 
    if
     re.search(
    "m", s): 
    print
    "Match!" 
    # char literal
Match!
>>> 
    if
     re.search(
    "[@A-Z]", s): 
    print
    "Match!" 
    # char class
... 
    # match either at-sign or capital letter
...
>>> 
    if
     re.search(
    "\d", s): 
    print
    "Match!" 
    # digits class
...

可以将字符类看作是规则表达式的“原子”,通常会将那些原子组合成“分子”。可以结合使用 分组和 循环 来完成此操作。由括号表示分组:括号中包含的任何子表达式都被看作是用于以后分组或循环的原子。循环则由以下几个运算符中的某一个来表示:"*" 表示“零或多”;"+" 表示“一或多”;"?" 表示“零或一”。例如,请看以下示例:
样本规则表达式

ABC([d-w]*\d\d?)+XYZ

对于要匹配这个表达式的字符串,它必须以 "ABC" 开头、以 "XYZ" 结尾 -- 但它的中间必须要有什么呢?中间子表达式是 ([d-w]*\d\d?),而且后面跟了“一或多”运算符。所以,字符串的中间必须包括一个(或者两个,或者一千个)与括号中的子表达式匹配的字符或字符串。字符串 "ABCXYZ" 不匹配,因为它的中间没有必要的字符。

不过这个内部子表达式是什么呢?它以 d-w 范围内的 零或多个 字母开头。一定要注意:零字母是有效匹配,虽然使用英语单词 "some"(一些)来描述它,可能会感到很别扭。接着,字符串必须 恰好有一个数字;然后有 零或一个 附加数字。(第一个数字字符类没有循环运算符,所以它只出现一次。第二个数字字符类有 "?" 运算符。)总而言之,这将翻译成“一个或两个数字”。以下是一些与规则表达式匹配的字符串:
匹配样本表达式的字符串

ABC1234567890XYZ
ABCd12e1f37g3XYZ
ABC1XYZ

还有一些表达式与规则表达式 不匹配(想一想,它们为什么不匹配):
不匹配样本表达式的字符串

ABC123456789dXYZ
ABCdefghijklmnopqrstuvwXYZ
ABcd12e1f37g3XYZ
ABC12345%67890XYZ
ABCD12E1F37G3XYZ

需要一些练习才能习惯创建和理解规则表达式。但是,一旦掌握了规则表达式,您就具有了强大的表达能力。也就是说,转而使用规则表达式解决问题通常会很容易,而这类问题实际上可以使用更简单(而且更快速)的工具,如 string,来解决。

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python vs. C:内存管理和控制Python vs. C:内存管理和控制Apr 19, 2025 am 12:17 AM

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

科学计算的Python:详细的外观科学计算的Python:详细的外观Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python和C:找到合适的工具Python和C:找到合适的工具Apr 19, 2025 am 12:04 AM

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

数据科学和机器学习的Python数据科学和机器学习的PythonApr 19, 2025 am 12:02 AM

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。