搜索
首页后端开发Python教程进一步了解Python中的XML 工具

模块:xmllib

xmllib 是一个非验证的低级语法分析器。应用程序员使用的 xmllib 可以覆盖 XMLParser 类,并提供处理文档元素(如特定或类属标记,或字符实体)的方法。从 Python 1.5x 到 Python 2.0+ 以来, xmllib 的使用方法并没变化;在绝大多数情况下更好的选择是使用 SAX 技术,它也是种面向流的技术,对语言和开发者来说更为标准。

本文中的示例与原来专栏中的相同:包括一个叫做 quotations.dtd 的 DTD 以及这个 DTD 的文档 sample.xml (请参阅 参考资料,以获取本文中提到的文件的档案)。以下的代码显示了 sample.xml 中每段引言的前几行,并生成了非常简单的未知标记和实体的 ASCII 指示符。经过分析的文本作为连续流来处理,所使用的任何累加器都由程序员负责(如标记中的字符串 (#PCDATA),或所遇到的标记的列表或词典)。
清单 1: try_xmllib.py

import
         xmllib, string
    
    classQuotationParser

        (xmllib.XMLParser):
  """Crude xmllib extractor for quotations.dtd document"""
  
    
    def__init__

        (self):
    xmllib.XMLParser.__init__(self)
    self.thisquote = ''       
    
    # quotation accumulator
     
     
     defhandle_data

        (self, data):
    self.thisquote = self.thisquote + data
  
    
    defsyntax_error
        (self, message):
    
    
    pass
  defstart_quotations
        (self, attrs): 
    
    # top level tag
         
     
     print

         '--- Begin Document ---'
  
    
    defstart_quotation
        (self, attrs):
    
    
    print
         'QUOTATION:'
  
    
    defend_quotation
        (self):
    
    
    print

         string.join(string.split(self.thisquote[:230]))+'...',
    
    
    print

         '('+str(len(self.thisquote))+' bytes)\n'
    self.thisquote = ''
  
    
    defunknown_starttag

        (self, tag, attrs):
    self.thisquote = self.thisquote + '{'
  
    
    defunknown_endtag

        (self, tag):
    self.thisquote = self.thisquote + '}'
  
    
    defunknown_charref

        (self, ref):
    self.thisquote = self.thisquote + '?'
  
    
    defunknown_entityref

        (self, ref):
    self.thisquote = self.thisquote + '#'
    
    if

         __name__ == '__main__':
  parser = QuotationParser()
  
    
    for
         c 
    
    in
         open("sample.xml").read():
    parser.feed(c)
  parser.close()


验证

您可能需要展望标准 XML 支持的未来的原因是,在进行语法分析的同时需要进行验证。不幸的是,标准 Python 2.0 XML 包并不包括验证型语法分析器。

xmlproc 是 python 原有的语法分析器,它执行几乎完整的验证。如果需要验证型语法分析器, xmlproc 是 Python 当前唯一的选择。而且, xmlproc 提供其它语法分析器所不具备的各种高级和测试接口。


选择一种语法分析器

如果决定使用 XML 的简单 API (SAX) -- 它应该用于复杂的事物,因为其它大部分工具都是在它的基础上建立的 -- 将为您完成许多语法分析器的分类工作。 xml.sax 模块包含一个自动选择“最佳”语法分析器的设施。在标准 Python 2.0 安装中,唯一能选择的语法分析器是 expat ,它是种 C 语言编写的快速扩展。然而,也可以在 $PYTHONLIB/xml/parsers 下安装另一个语法分析器,以备选择。设置语法分析器很简单:
清单 2: Python 选择最佳语法分析器的语句

import
         xml.sax
parser = xml.sax.make_parser()

您还可以通过传递参数来选择特定的语法分析器;但考虑到可移植性 -- 也为了对今后更好的语法分析器的向上兼容性 -- 最佳方法是使用 make_parser() 来完成工作。

您可以直接导入 xml.parsers.expat 。如果这样做,您就能获得 SAX 界面并不提供的一些特殊技巧。这样, xml.parsers.expat 与 SAX 相比有些“低级”。但 SAX 技术非常标准,对面向流的处理也非常好;大多数情况下 SAX 的级别正合适。通常情况下,由于 make_parser() 函数已经能获得 expat 提供的性能,因此纯速度的差异很小。


什么是 SAX

考虑到背景因素,回答什么是 SAX 的较好答案是:

    SAX (XML 的简单 API)是 XML 语法分析器的公用语法分析器接口。它允许应用程序作者编写使用 XML 语法分析器的应用程序,但是它却独立于所使用的语法分析器。(将它看作 XML 的 JDBC。)(Lars Marius Garshol,SAX for Python)

SAX -- 如同它提供的语法分析器模块的 API -- 基本上是一个 XML 文档的顺序处理器。使用它的方法与 xmllib 示例极其相似,但更加抽象。应用程序员将定义一个 handler 类,而不是语法分析器类,该 handler 类能注册到任何所使用的语法分析器中。必须定义 4 个 SAX 接口(每个接口都有几个方法):DocumentHandler、DTDHandler、EntityResolver 和 ErrorHandler。创建语法分析器除非被覆盖,否则它还连接默认接口。这些代码执行与 xmllib 示例相同的任务:
清单 3: try_sax.py

"Simple SAX example, updated for Python 2.0+"
    
    import
         string
    
    import
         xml.sax
    
    from
         xml.sax.handler 
    
    import
         *
    
    classQuotationHandler

        
  (ContentHandler):
  """Crude extractor for quotations.dtd compliant XML document"""
  
    
    def__init__

        
  (self):
    self.in_quote = 0
    self.thisquote = ''
  
    
    defstartDocument
        
  (self):
    
    
    print

         '--- Begin Document ---'
  
    
    defstartElement

        
  (self, name, attrs):
    
    
    if

         name == 'quotation':
      
    
    print

         'QUOTATION:'
      self.in_quote = 1
    
    
    else:
    
    
      self.thisquote = self.thisquote + '{'
  
    
    defendElement

        
  (self, name):
    
    
    if

         name == 'quotation':
      
    
    print

         string.join(string.split(self.thisquote[:230]))+'...',
      
    
    print

         '('+str(len(self.thisquote))+' bytes)\n'
      self.thisquote = ''
      self.in_quote = 0
    
    
    else:
    
    
      self.thisquote = self.thisquote + '}'
  
    
    defcharacters
        
  (self, ch):
    
    
    if

         self.in_quote:
      self.thisquote = self.thisquote + ch
    
    if
         __name__ == '__main__':
  parser = xml.sax.make_parser()
  handler = QuotationHandler()
  parser.setContentHandler(handler)
  parser.parse("sample.xml")

与 xmllib 相比,上述示例中要注意两件小事: .parse() 方法处理整个流或字符串,所以不必为语法分析器创建循环; .parse() 同样能灵活地接收一个文件名、一个文件对象,或是众多的类文件对象(一些具有 .read() 方式)。


包:DOM

DOM 是一种 XML 文档的高级树型表示。该模型并非只针对 Python,而是一种普通 XML 模型(请参阅 参考资料以获取进一步信息)。Python 的 DOM 包是基于 SAX 构建的,并且包括在 Python 2.0 的标准 XML 支持里。由于篇幅所限,没有将代码示例加到本文中,但在 XML-SIG 的 "Python/XML HOWTO" 中给出了一个极好的总体描述:

    文档对象模型为 XML 文档指定了树型表示。顶级文档实例是树的根,它只有一个子代,即顶级元素实例;这个元素有表示内容和子元素的子节点,他们也可以有子代,以此类推。定义的函数允许随意遍历结果树,访问元素和属性值,插入和删除节点,以及将树转换回 XML。

    DOM 可以用于修改 XML 文档,因为可以创建一棵 DOM 树,通过添加新节点和来回移动子树来修改这棵树,然后生成一个新的 XML 文档作为输出。您也可以自己构造一棵 DOM 树,然后将它转换成 XML;用这种方法生成 XML 输出比仅将 ... 写入文件的方法更灵活。

使用 xml.dom 模块的语法与早期的文章相比有了一些变动。Python 2.0 中自带的 DOM 实现被称为 xml.dom.minidom ,并提供轻量级和小型版本的 DOM。显然,完整的 XML-SIG 的 DOM 中有些试验性的特性并未被放入 xml.dom.minidom 中,但大家并不会注意到这一点。

生成 DOM 对象很简单;只需:
清单 4: 在 XML 文件中创建 Python DOM 对象

from
         xml.dom.minidom 
    
    import

         parse, parseString
dom1 = parse('mydata.xml') 
    
    # parse an XML file by name

使用 DOM 对象是种非常直接的 OOP 模式的工作。然而,经常在无法立刻简单区分的层级(除了循环列举)中碰到许多类似清单的属性。例如,以下是一段普通的 DOM Python 代码片断:
清单 5: 通过 Python DOM 节点对象的迭代

for
         node 
    
    in
         dom_node.childNodes:
  
    
    if

         node.nodeName == '#text':   
    
    # PCDATA is a kind of node,
    PCDATA = node.nodeValue    
    
    # but not a new subtag
     
     
     elif

         node.nodeName == 'spam':
    spam_node_list.append(node) 
    
    # Create list of <spam> nodes

Python 标准说明文档中有一些更详细的 DOM 示例。我的早期文章中有关使用 DOM 对象的示例(请参阅 参考资料)指出的方向仍然是正确的,但是文章发布后至今,一些方法和属性名称以更改,因此请查阅一下 Python 的说明文档。


模块: pyxie

pyxie 模块是在 Python 标准 XML 支持之上构建的,它为 XML 文档提供了附加的高级接口。 pyxie 将完成两项基本操作:它将 XML 文档转换成一种更易于进行语法分析的基于行的格式;并且它提供了将 XML 文档当作可操作树处理的方法。 pyxie 所使用的基于行的 PYX 格式是不受语言限制的,其工具适用于几种语言。总之,文档的 PYX 表示与其 XML 表示相比,更易于使用常见的基于行的文本处理工具进行处理,如 grep、sed、awk、bash、perl,或标准 python 模块,如 string 和 re 。根据结果,从 XML 转换到 PYX 可能节省许多工作。

pyxie 将 XML 文档当作树处理的概念与 DOM 中的思路相似。由于 DOM 标准得到许多编程语言的广泛支持,那么如果 XML 文档的树型表示是必需的,大多数程序员会使用 DOM 标准而非 pyxie 。


更多模块: xml_pickle 和 xml_objectify

我自行开发了处理 XML 的高级模块,称为 xml_pickle 和 xml_objectify 。我还在其它地方写过许多类似模块(请参阅 参考资料),在此不必做过多的介绍。当你“用 Python 思考”而不是“用 XML 思考”时,这些模块非常有用。特别是 xml_objectify 自身对程序员隐藏了几乎所有的 XML 线索,使您在程序中充分使用 Python “原始”对象。实际的 XML 数据格式几乎被抽象得不可见。同样, xml_pickle 使 Python 程序员以“原始” Python 对象开始,该对象的数据可以来源于任何源代码,然后把它们(连续地)放入其他用户以后可能需要的 XML 格式。

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python的执行模型:编译,解释还是两者?Python的执行模型:编译,解释还是两者?May 10, 2025 am 12:04 AM

pythonisbothCompileDIntered。

Python是按线执行的吗?Python是按线执行的吗?May 10, 2025 am 12:03 AM

Python不是严格的逐行执行,而是基于解释器的机制进行优化和条件执行。解释器将代码转换为字节码,由PVM执行,可能会预编译常量表达式或优化循环。理解这些机制有助于优化代码和提高效率。

python中两个列表的串联替代方案是什么?python中两个列表的串联替代方案是什么?May 09, 2025 am 12:16 AM

可以使用多种方法在Python中连接两个列表:1.使用 操作符,简单但在大列表中效率低;2.使用extend方法,效率高但会修改原列表;3.使用 =操作符,兼具效率和可读性;4.使用itertools.chain函数,内存效率高但需额外导入;5.使用列表解析,优雅但可能过于复杂。选择方法应根据代码上下文和需求。

Python:合并两个列表的有效方法Python:合并两个列表的有效方法May 09, 2025 am 12:15 AM

有多种方法可以合并Python列表:1.使用 操作符,简单但对大列表不内存高效;2.使用extend方法,内存高效但会修改原列表;3.使用itertools.chain,适用于大数据集;4.使用*操作符,一行代码合并小到中型列表;5.使用numpy.concatenate,适用于大数据集和性能要求高的场景;6.使用append方法,适用于小列表但效率低。选择方法时需考虑列表大小和应用场景。

编译的与解释的语言:优点和缺点编译的与解释的语言:优点和缺点May 09, 2025 am 12:06 AM

CompiledLanguagesOffersPeedAndSecurity,而interneterpretledlanguages provideeaseafuseanDoctability.1)commiledlanguageslikec arefasterandSecureButhOnderDevevelmendeclementCyclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesandentency.2)cransportedeplatectentysenty

Python:对于循环,最完整的指南Python:对于循环,最完整的指南May 09, 2025 am 12:05 AM

Python中,for循环用于遍历可迭代对象,while循环用于条件满足时重复执行操作。1)for循环示例:遍历列表并打印元素。2)while循环示例:猜数字游戏,直到猜对为止。掌握循环原理和优化技巧可提高代码效率和可靠性。

python concatenate列表到一个字符串中python concatenate列表到一个字符串中May 09, 2025 am 12:02 AM

要将列表连接成字符串,Python中使用join()方法是最佳选择。1)使用join()方法将列表元素连接成字符串,如''.join(my_list)。2)对于包含数字的列表,先用map(str,numbers)转换为字符串再连接。3)可以使用生成器表达式进行复杂格式化,如','.join(f'({fruit})'forfruitinfruits)。4)处理混合数据类型时,使用map(str,mixed_list)确保所有元素可转换为字符串。5)对于大型列表,使用''.join(large_li

Python的混合方法:编译和解释合并Python的混合方法:编译和解释合并May 08, 2025 am 12:16 AM

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增强效率和通用性。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具