假如你对数独解法感兴趣,你可能听说过精确覆盖问题。给定全集 X 和 X 的子集的集合 Y ,存在一个 Y 的子集 Y*,使得 Y* 构成 X 的一种分割。
这儿有个Python写的例子。
X = {1, 2, 3, 4, 5, 6, 7} Y = { 'A': [1, 4, 7], 'B': [1, 4], 'C': [4, 5, 7], 'D': [3, 5, 6], 'E': [2, 3, 6, 7], 'F': [2, 7]}
这个例子的唯一解是['B', 'D', 'F']。
精确覆盖问题是NP完备(译注:指没有任何一个够快的方法可以在合理的时间内,意即多项式时间 找到答案)。X算法是由大牛高德纳发明并实现。他提出了一种高效的实现技术叫舞蹈链,使用双向链表来表示该问题的矩阵。
然而,舞蹈链实现起来可能相当繁琐,并且不易写地正确。接下来就是展示Python奇迹的时刻了!有天我决定用Python来编写X 算法,并且我想出了一个有趣的舞蹈链变种。
算法
主要的思路是使用字典来代替双向链表来表示矩阵。我们已经有了 Y。从它那我们能快速的访问每行的列元素。现在我们还需要生成行的反向表,换句话说就是能从列中快速访问行元素。为实现这个目的,我们把X转换为字典。在上述的例子中,它应该写为
X = { 1: {'A', 'B'}, 2: {'E', 'F'}, 3: {'D', 'E'}, 4: {'A', 'B', 'C'}, 5: {'C', 'D'}, 6: {'D', 'E'}, 7: {'A', 'C', 'E', 'F'}}
眼尖的读者能注意到这跟Y的表示有轻微的不同。事实上,我们需要能快速删除和添加行到每列,这就是为什么我们使用集合。另一方面,高德纳没有提到这点,实际上整个算法中所有行是保持不变的。
以下是算法的代码。
def solve(X, Y, solution=[]): if not X: yield list(solution) else: c = min(X, key=lambda c: len(X[c])) for r in list(X[c]): solution.append(r) cols = select(X, Y, r) for s in solve(X, Y, solution): yield s deselect(X, Y, r, cols) solution.pop() def select(X, Y, r): cols = [] for j in Y[r]: for i in X[j]: for k in Y[i]: if k != j: X[k].remove(i) cols.append(X.pop(j)) return cols def deselect(X, Y, r, cols): for j in reversed(Y[r]): X[j] = cols.pop() for i in X[j]: for k in Y[i]: if k != j: X[k].add(i)
真的只有 30 行!
格式化输入
在解决实际问题前,我们需要将输入转换为上面描述的格式。可以这样简单处理
X = {j: set(filter(lambda i: j in Y[i], Y)) for j in X}
但这样太慢了。假如设 X 大小为 m,Y 的大小为 n,则迭代次数为 m*n。在这例子中的数独格子大小为 N,那需要 N^5 次。我们有更好的办法。
X = {j: set() for j in X} for i in Y: for j in Y[i]: X[j].add(i)
这还是 O(m*n) 的复杂度,但是是最坏情况。平均情况下它的性能会好很多,因为它不需要遍历所有的空格位。在数独的例子中,矩阵中每行恰好有 4 个条目,无论大小,因此它有N^3的复杂度。
优点
- 简单: 不需要构造复杂的数据结构,所有用到的结构Python都有提供。
- 可读性: 上述第一个例子是直接从Wikipedia上的范例直接转录下来的!
- 灵活性: 可以很简单得扩展来解决数独。
求解数独
我们需要做的就是把数独描述成精确覆盖问题。这里有完整的数独解法代码,它能处理任意大小,3×3,5×5,即使是2×3,所有代码少于100行,并包含doctest!(感谢Winfried Plappert 和 David Goodger的评论和建议)

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver Mac版
视觉化网页开发工具

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

Dreamweaver CS6
视觉化网页开发工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

SublimeText3 Linux新版
SublimeText3 Linux最新版