一、pickle
pickle模块用来实现python对象的序列化和反序列化。通常地pickle将python对象序列化为二进制流或文件。
python对象与文件之间的序列化和反序列化:
代码如下:
pickle.dump()
pickle.load()
如果要实现python对象和字符串间的序列化和反序列化,则使用:
代码如下:
pickle.dumps()
pickle.loads()
可以被序列化的类型有:
* None,True 和 False;
* 整数,浮点数,复数;
* 字符串,字节流,字节数组;
* 包含可pickle对象的tuples,lists,sets和dictionaries;
* 定义在module顶层的函数:
* 定义在module顶层的内置函数;
* 定义在module顶层的类;
* 拥有__dict__()或__setstate__()的自定义类型;
注意:对于函数或类的序列化是以名字来识别的,所以需要import相应的module。
二、pickle的运行过程
在大部分情况下,要是的对象picklable,我们不需要额外的代码。默认地pickle将智能地检查类和实例的属性,当一个类实例反序列化的时候,它的__init__()方法通常不被调用。而是首先创建一个未初始化的实例,然后再回复存储的属性。
但是可以通过实现下列的方法来修改默认的行为:
代码如下:
object.__getstate__() :默认地序列化对象的__dict__,但是如果你实现了__getstate__(),则__getstate__()函数返回的值将被序列化。
object.__setstate__(state) :如果类型实现了此方法,则在反序列化的时候,此方法用来恢复对象的属性。
object.__getnewargs__() : 如果实例构造的时候(__new__())需要参数,则需要实现此函数。
注意:如果__getstate__()返回False,则在反序列化的时候__setstate__()则不被调用。
有的时候为了效率,或上面的3个函数不能满足需求时,需要实现__reduce__()函数。
三、实例
代码如下:
import pickle
# An arbitrary collection of objects supported by pickle.
data = {
'a': [1, 2.0, 3, 4 6j],
'b': ("character string", b"byte string"),
'c': set([None, True, False])
}
with open('data.pickle', 'wb') as f:
# Pickle the 'data' dictionary using the highest protocol available.
pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)
with open('data.pickle', 'rb') as f:
# The protocol version used is detected automatically, so we do not
# have to specify it.
data = pickle.load(f)
print(str(data))
四、修改picklable类型的默认行为
代码如下:
class TextReader:
"""Print and number lines in a text file."""
def __init__(self, filename):
self.filename = filename
self.file = open(filename)
self.lineno = 0
def readline(self):
self.lineno = 1
line = self.file.readline()
if not line:
return None
if line.endswith('n'):
line = line[:-1]
return "%i: %s" % (self.lineno, line)
def __getstate__(self):
# 从 self.__dict__ 复制对象的状态,其中包含
# 我们所有的实例属性。始终使用 dict.copy()
# 避免修改原始状态的方法。
state = self.__dict__.copy()
# 删除不可picklable 的条目。
del state['文件']
返回状态
def __setstate__(self, state):
# 恢复实例属性(即文件名和行号)。
self.__dict__.update(状态)
# 恢复之前打开的文件的状态。为此,我们需要
# 重新打开它并从中读取,直到恢复行数。
file = open(self.文件名)
对于 _ 在范围内(self.lineno):
file.readline()
# 最后,保存文件。
self.file = 文件
reader = TextReader("hello.txt")
print(reader.readline())
print(reader.readline())
s = pickle.dumps(reader)
#打印
new_reader = pickle.loads(s)
print(new_reader.readline())
# 输出为
#1:你好
#2:你好吗
#3:再见

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

禅工作室 13.0.1
功能强大的PHP集成开发环境