搜索
首页后端开发Python教程Python回调函数用法实例详解

本文实例讲述了Python回调函数用法。分享给大家供大家参考。具体分析如下:

一、百度百科上对回调函数的解释:

回调函数就是一个通过函数指针调用的函数。如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用为调用它所指向的函数时,我们就说这是回调函数。回调函数不是由该函数的实现方直接调用,而是在特定的事件或条件发生时由另外的一方调用的,用于对该事件或条件进行响应。

二、什么是回调:

软件模块之间总是存在着一定的接口,从调用方式上,可以把他们分为三类:同步调用、回调和异步调用。同步调用是一种阻塞式调用,调用方要等待对方执行完毕才返回,它是一种单向调用;回调是一种双向调用模式,也就是说,被调用方在接口被调用时也会调用对方的接口;异步调用是一种类似消息或事件的机制,不过它的调用方向刚好相反,接口的服务在收到某种讯息或发生某种事件时,会主动通知客户方(即调用客户方的接口)。回调和异步调用的关系非常紧密,通常我们使用回调来实现异步消息的注册,通过异步调用来实现消息的通知。同步调用是三者当中最简单的,而回调又常常是异步调用的基础,因此,下面我们着重讨论回调机制在不同软件架构中的实现。

三、一个小例子:

#call.py 
import called 
def callback(): 
  print "in callback" 
def main(): 
  #called.test() 
  called.test_call(callback) 
  print "in call.py" 
main() 
#called.py 
''''' 
def test(): 
  print "in called.py test()" 
''' 
def test_call(p_call): 
  print "in called.py test_call()" 
  p_call() 
joe@joe:~/test/python$ python call.py 
in called.py test_call() 
in callback 
in call.py 
joe@joe:~/test/python$

网上搜到的一个面向对象实现的例子:

当你要加入回调(Callback)功能的时候,代码往往会偏重于回调的实现而不是问题本身了。一个解决方法就是实现一个通用的基础类来解决回调的需求,然后再来实现你为某个事件(Event)所绑定(Binding)的方法(Method)。

代码如下:

class CallbackBase: 
  def __init__(self): 
 self.__callbackMap = {} 
 for k in (getattr(self, x) for x in dir(self)): 
   if hasattr(k, "bind_to_event"): 
 self.__callbackMap.setdefault(k.bind_to_event, []).append(k) 
   elif hasattr(k, "bind_to_event_list"): 
 for j in k.bind_to_event_list: 
   self.__callbackMap.setdefault(j, []).append(k) 
  ## staticmethod is only used to create a namespace 
  @staticmethod 
  def callback(event): 
 def f(g, ev = event): 
   g.bind_to_event = ev 
   return g 
 return f 
  @staticmethod 
  def callbacklist(eventlist): 
 def f(g, evl = eventlist): 
   g.bind_to_event_list = evl 
   return g 
 return f 
  def dispatch(self, event): 
 l = self.__callbackMap[event] 
 f = lambda *args, **kargs: \ 
   map(lambda x: x(*args, **kargs), l) 
 return f 
## Sample 
class MyClass(CallbackBase): 
  EVENT1 = 1 
  EVENT2 = 2 
  @CallbackBase.callback(EVENT1) 
  def handler1(self, param = None): 
 print "handler1 with param: %s" % str(param) 
 return None 
  @CallbackBase.callbacklist([EVENT1, EVENT2]) 
  def handler2(self, param = None): 
 print "handler2 with param: %s" % str(param) 
 return None 
  def run(self, event, param = None): 
 self.dispatch(event)(param) 
if __name__ == "__main__": 
  a = MyClass() 
  a.run(MyClass.EVENT1, 'mandarina') 
  a.run(MyClass.EVENT2, 'naranja') 

这里有一个类,它有两个事件(EVENT1和EVENT2)和两个处理函数(handler)。第一个处理函数handler1注册了EVENT1,而第二个处理函数handler2当EVENT1或者EVENT2发生的时候都会执行(即注册了全部的事件)。

运行函数(run)在MyClass的主循环中,它会将对应的事件派送(dispatch)出去。这(这里指dispatch函数)会返回一个函数,我们可以把所有需要传给这个函数的参数列表传给它。这个函数运行结束会返回一个列表(list),列表中是所有的返回值。

也许,使用Metaclass能够实现的更优雅一些吧。

希望本文所述对大家的Python程序设计有所帮助。

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python vs. C:内存管理和控制Python vs. C:内存管理和控制Apr 19, 2025 am 12:17 AM

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

科学计算的Python:详细的外观科学计算的Python:详细的外观Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python和C:找到合适的工具Python和C:找到合适的工具Apr 19, 2025 am 12:04 AM

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

数据科学和机器学习的Python数据科学和机器学习的PythonApr 19, 2025 am 12:02 AM

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境