搜索
首页后端开发Python教程在Python中编写数据库模块的教程

在一个Web App中,所有数据,包括用户信息、发布的日志、评论等,都存储在数据库中。在awesome-python-app中,我们选择MySQL作为数据库。

Web App里面有很多地方都要访问数据库。访问数据库需要创建数据库连接、游标对象,然后执行SQL语句,最后处理异常,清理资源。这些访问数据库的代码如果分散到各个函数中,势必无法维护,也不利于代码复用。

此外,在一个Web App中,有多个用户会同时访问,系统以多进程或多线程模式来处理每个用户的请求。假设以多线程为例,每个线程在访问数据库时,都必须创建仅属于自身的连接,对别的线程不可见,否则,就会造成数据库操作混乱。

所以,我们还要创建一个简单可靠的数据库访问模型,在一个线程中,能既安全又简单地操作数据库。

为什么不选择SQLAlchemy?SQLAlchemy太庞大,过度地面向对象设计导致API太复杂。

所以我们决定自己设计一个封装基本的SELECT、INSERT、UPDATE和DELETE操作的db模块:transwarp.db。
设计db接口

设计底层模块的原则是,根据上层调用者设计简单易用的API接口,然后,实现模块内部代码。

假设transwarp.db模块已经编写完毕,我们希望以这样的方式来调用它:

首先,初始化数据库连接信息,通过create_engine()函数:

from transwarp import db
db.create_engine(user='root', password='password', database='test', host='127.0.0.1', port=3306)

然后,就可以直接操作SQL了。

如果需要做一个查询,可以直接调用select()方法,返回的是list,每一个元素是用dict表示的对应的行:

users = db.select('select * from user')
# users =>
# [
#   { "id": 1, "name": "Michael"},
#   { "id": 2, "name": "Bob"},
#   { "id": 3, "name": "Adam"}
# ]

如果要执行INSERT、UPDATE或DELETE操作,执行update()方法,返回受影响的行数:

n = db.update('insert into user(id, name) values(?, ?)', 4, 'Jack')

update()函数签名为:

update(sql, *args)

统一用?作为占位符,并传入可变参数来绑定,从根本上避免SQL注入攻击。

每个select()或update()调用,都隐含地自动打开并关闭了数据库连接,这样,上层调用者就完全不必关心数据库底层连接。

但是,如果要在一个数据库连接里执行多个SQL语句怎么办?我们用一个with语句实现:

with db.connection():
  db.select('...')
  db.update('...')
  db.update('...')

如果要在一个数据库事务中执行多个SQL语句怎么办?我们还是用一个with语句实现:

with db.transaction():
  db.select('...')
  db.update('...')
  db.update('...')

实现db模块

由于模块是全局对象,模块变量是全局唯一变量,所以,有两个重要的模块变量:

# db.py

# 数据库引擎对象:
class _Engine(object):
  def __init__(self, connect):
    self._connect = connect
  def connect(self):
    return self._connect()

engine = None

# 持有数据库连接的上下文对象:
class _DbCtx(threading.local):
  def __init__(self):
    self.connection = None
    self.transactions = 0

  def is_init(self):
    return not self.connection is None

  def init(self):
    self.connection = _LasyConnection()
    self.transactions = 0

  def cleanup(self):
    self.connection.cleanup()
    self.connection = None

  def cursor(self):
    return self.connection.cursor()

_db_ctx = _DbCtx()

由于_db_ctx是threadlocal对象,所以,它持有的数据库连接对于每个线程看到的都是不一样的。任何一个线程都无法访问到其他线程持有的数据库连接。

有了这两个全局变量,我们继续实现数据库连接的上下文,目的是自动获取和释放连接:

class _ConnectionCtx(object):
  def __enter__(self):
    global _db_ctx
    self.should_cleanup = False
    if not _db_ctx.is_init():
      _db_ctx.init()
      self.should_cleanup = True
    return self

  def __exit__(self, exctype, excvalue, traceback):
    global _db_ctx
    if self.should_cleanup:
      _db_ctx.cleanup()

def connection():
  return _ConnectionCtx()

定义了__enter__()和__exit__()的对象可以用于with语句,确保任何情况下__exit__()方法可以被调用。

把_ConnectionCtx的作用域作用到一个函数调用上,可以这么写:

with connection():
  do_some_db_operation()

但是更简单的写法是写个@decorator:

@with_connection
def do_some_db_operation():
  pass


这样,我们实现select()、update()方法就更简单了:

@with_connection
def select(sql, *args):
  pass

@with_connection
def update(sql, *args):
  pass

注意到Connection对象是存储在_DbCtx这个threadlocal对象里的,因此,嵌套使用with connection()也没有问题。_DbCtx永远检测当前是否已存在Connection,如果存在,直接使用,如果不存在,则打开一个新的Connection。

对于transaction也是类似的,with transaction()定义了一个数据库事务:

with db.transaction():
  db.select('...')
  db.update('...')
  db.update('...')

函数作用域的事务也有一个简化的@decorator:

@with_transaction
def do_in_transaction():
  pass

事务也可以嵌套,内层事务会自动合并到外层事务中,这种事务模型足够满足99%的需求。

事务嵌套比Connection嵌套复杂一点,因为事务嵌套需要计数,每遇到一层嵌套就+1,离开一层嵌套就-1,最后到0时提交事务:

class _TransactionCtx(object):
  def __enter__(self):
    global _db_ctx
    self.should_close_conn = False
    if not _db_ctx.is_init():
      _db_ctx.init()
      self.should_close_conn = True
    _db_ctx.transactions = _db_ctx.transactions + 1
    return self

  def __exit__(self, exctype, excvalue, traceback):
    global _db_ctx
    _db_ctx.transactions = _db_ctx.transactions - 1
    try:
      if _db_ctx.transactions==0:
        if exctype is None:
          self.commit()
        else:
          self.rollback()
    finally:
      if self.should_close_conn:
        _db_ctx.cleanup()

  def commit(self):
    global _db_ctx
    try:
      _db_ctx.connection.commit()
    except:
      _db_ctx.connection.rollback()
      raise

  def rollback(self):
    global _db_ctx
    _db_ctx.connection.rollback()

最后,把select()和update()方法实现了,db模块就完成了。

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python vs. C:内存管理和控制Python vs. C:内存管理和控制Apr 19, 2025 am 12:17 AM

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

科学计算的Python:详细的外观科学计算的Python:详细的外观Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python和C:找到合适的工具Python和C:找到合适的工具Apr 19, 2025 am 12:04 AM

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

数据科学和机器学习的Python数据科学和机器学习的PythonApr 19, 2025 am 12:02 AM

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境