搜索
首页后端开发Python教程深入解析Python编程中JSON模块的使用

JSON编码支持的基本数据类型为 None , bool , int , float 和 str , 以及包含这些类型数据的lists,tuples和dictionaries。 对于dictionaries,keys需要是字符串类型(字典中任何非字符串类型的key在编码时会先转换为字符串)。 为了遵循JSON规范,你应该只编码Python的lists和dictionaries。 而且,在web应用程序中,顶层对象被编码为一个字典是一个标准做法。

JSON编码的格式对于Python语法而已几乎是完全一样的,除了一些小的差异之外。 比如,True会被映射为true,False被映射为false,而None会被映射为null。 下面是一个例子,演示了编码后的字符串效果:

>>> json.dumps(False)
'false'
>>> d = {'a': True,
...   'b': 'Hello',
...   'c': None}
>>> json.dumps(d)
'{"b": "Hello", "c": null, "a": true}'
>>>

如果你试着去检查JSON解码后的数据,你通常很难通过简单的打印来确定它的结构, 特别是当数据的嵌套结构层次很深或者包含大量的字段时。 为了解决这个问题,可以考虑使用pprint模块的 pprint() 函数来代替普通的 print() 函数。 它会按照key的字母顺序并以一种更加美观的方式输出。 下面是一个演示如何漂亮的打印输出Twitter上搜索结果的例子:

>>> from urllib.request import urlopen
>>> import json
>>> u = urlopen('http://search.twitter.com/search.json?q=python&rpp=5')
>>> resp = json.loads(u.read().decode('utf-8'))
>>> from pprint import pprint
>>> pprint(resp)
{'completed_in': 0.074,
'max_id': 264043230692245504,
'max_id_str': '264043230692245504',
'next_page': '?page=2&max_id=264043230692245504&q=python&rpp=5',
'page': 1,
'query': 'python',
'refresh_url': '?since_id=264043230692245504&q=python',
'results': [{'created_at': 'Thu, 01 Nov 2012 16:36:26 +0000',
      'from_user': ...
      },
      {'created_at': 'Thu, 01 Nov 2012 16:36:14 +0000',
      'from_user': ...
      },
      {'created_at': 'Thu, 01 Nov 2012 16:36:13 +0000',
      'from_user': ...
      },
      {'created_at': 'Thu, 01 Nov 2012 16:36:07 +0000',
      'from_user': ...
      }
      {'created_at': 'Thu, 01 Nov 2012 16:36:04 +0000',
      'from_user': ...
      }],
'results_per_page': 5,
'since_id': 0,
'since_id_str': '0'}
>>>

一般来讲,JSON解码会根据提供的数据创建dicts或lists。 如果你想要创建其他类型的对象,可以给 json.loads() 传递object_pairs_hook或object_hook参数。 例如,下面是演示如何解码JSON数据并在一个OrderedDict中保留其顺序的例子:

>>> s = '{"name": "ACME", "shares": 50, "price": 490.1}'
>>> from collections import OrderedDict
>>> data = json.loads(s, object_pairs_hook=OrderedDict)
>>> data
OrderedDict([('name', 'ACME'), ('shares', 50), ('price', 490.1)])
>>>

下面是如何将一个JSON字典转换为一个Python对象例子:

>>> class JSONObject:
...   def __init__(self, d):
...     self.__dict__ = d
...
>>>
>>> data = json.loads(s, object_hook=JSONObject)
>>> data.name
'ACME'
>>> data.shares
50
>>> data.price
490.1
>>>

最后一个例子中,JSON解码后的字典作为一个单个参数传递给 __init__() 。 然后,你就可以随心所欲的使用它了,比如作为一个实例字典来直接使用它。

在编码JSON的时候,还有一些选项很有用。 如果你想获得漂亮的格式化字符串后输出,可以使用 json.dumps() 的indent参数。 它会使得输出和pprint()函数效果类似。比如:

>>> print(json.dumps(data))
{"price": 542.23, "name": "ACME", "shares": 100}
>>> print(json.dumps(data, indent=4))
{
  "price": 542.23,
  "name": "ACME",
  "shares": 100
}
>>>

对象实例通常并不是JSON可序列化的。例如:

>>> class Point:
...   def __init__(self, x, y):
...     self.x = x
...     self.y = y
...
>>> p = Point(2, 3)
>>> json.dumps(p)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python3.3/json/__init__.py", line 226, in dumps
    return _default_encoder.encode(obj)
  File "/usr/local/lib/python3.3/json/encoder.py", line 187, in encode
    chunks = self.iterencode(o, _one_shot=True)
  File "/usr/local/lib/python3.3/json/encoder.py", line 245, in iterencode
    return _iterencode(o, 0)
  File "/usr/local/lib/python3.3/json/encoder.py", line 169, in default
    raise TypeError(repr(o) + " is not JSON serializable")
TypeError: <__main__.Point object at 0x1006f2650> is not JSON serializable
>>>

如果你想序列化对象实例,你可以提供一个函数,它的输入是一个实例,返回一个可序列化的字典。例如:

def serialize_instance(obj):
  d = { '__classname__' : type(obj).__name__ }
  d.update(vars(obj))
  return d

如果你想反过来获取这个实例,可以这样做:

# Dictionary mapping names to known classes
classes = {
  'Point' : Point
}

def unserialize_object(d):
  clsname = d.pop('__classname__', None)
  if clsname:
    cls = classes[clsname]
    obj = cls.__new__(cls) # Make instance without calling __init__
    for key, value in d.items():
      setattr(obj, key, value)
      return obj
  else:
    return d

下面是如何使用这些函数的例子:

>>> p = Point(2,3)
>>> s = json.dumps(p, default=serialize_instance)
>>> s
'{"__classname__": "Point", "y": 3, "x": 2}'
>>> a = json.loads(s, object_hook=unserialize_object)
>>> a
<__main__.Point object at 0x1017577d0>
>>> a.x
2
>>> a.y
3
>>>

json 模块还有很多其他选项来控制更低级别的数字、特殊值如NaN等的解析。 可以参考官方文档获取更多细节。

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python的执行模型:编译,解释还是两者?Python的执行模型:编译,解释还是两者?May 10, 2025 am 12:04 AM

pythonisbothCompileDIntered。

Python是按线执行的吗?Python是按线执行的吗?May 10, 2025 am 12:03 AM

Python不是严格的逐行执行,而是基于解释器的机制进行优化和条件执行。解释器将代码转换为字节码,由PVM执行,可能会预编译常量表达式或优化循环。理解这些机制有助于优化代码和提高效率。

python中两个列表的串联替代方案是什么?python中两个列表的串联替代方案是什么?May 09, 2025 am 12:16 AM

可以使用多种方法在Python中连接两个列表:1.使用 操作符,简单但在大列表中效率低;2.使用extend方法,效率高但会修改原列表;3.使用 =操作符,兼具效率和可读性;4.使用itertools.chain函数,内存效率高但需额外导入;5.使用列表解析,优雅但可能过于复杂。选择方法应根据代码上下文和需求。

Python:合并两个列表的有效方法Python:合并两个列表的有效方法May 09, 2025 am 12:15 AM

有多种方法可以合并Python列表:1.使用 操作符,简单但对大列表不内存高效;2.使用extend方法,内存高效但会修改原列表;3.使用itertools.chain,适用于大数据集;4.使用*操作符,一行代码合并小到中型列表;5.使用numpy.concatenate,适用于大数据集和性能要求高的场景;6.使用append方法,适用于小列表但效率低。选择方法时需考虑列表大小和应用场景。

编译的与解释的语言:优点和缺点编译的与解释的语言:优点和缺点May 09, 2025 am 12:06 AM

CompiledLanguagesOffersPeedAndSecurity,而interneterpretledlanguages provideeaseafuseanDoctability.1)commiledlanguageslikec arefasterandSecureButhOnderDevevelmendeclementCyclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesandentency.2)cransportedeplatectentysenty

Python:对于循环,最完整的指南Python:对于循环,最完整的指南May 09, 2025 am 12:05 AM

Python中,for循环用于遍历可迭代对象,while循环用于条件满足时重复执行操作。1)for循环示例:遍历列表并打印元素。2)while循环示例:猜数字游戏,直到猜对为止。掌握循环原理和优化技巧可提高代码效率和可靠性。

python concatenate列表到一个字符串中python concatenate列表到一个字符串中May 09, 2025 am 12:02 AM

要将列表连接成字符串,Python中使用join()方法是最佳选择。1)使用join()方法将列表元素连接成字符串,如''.join(my_list)。2)对于包含数字的列表,先用map(str,numbers)转换为字符串再连接。3)可以使用生成器表达式进行复杂格式化,如','.join(f'({fruit})'forfruitinfruits)。4)处理混合数据类型时,使用map(str,mixed_list)确保所有元素可转换为字符串。5)对于大型列表,使用''.join(large_li

Python的混合方法:编译和解释合并Python的混合方法:编译和解释合并May 08, 2025 am 12:16 AM

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增强效率和通用性。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。