AI做数学题,真正的思考居然是暗中“心算”的?
纽约大学团队新研究发现,即使不让AI写步骤,全用无意义的“……”代替,在一些复杂任务上的表现也能大幅提升!
一作Jacab Pfau表示:只要花费算力生成额外token就能带来优势,具体选择了什么token无关紧要。
图片
举例来说,让Llama 34M回答一个简单问题:自然常数e的前6位数字中,有几个大于5的?
AI直接回答约等于瞎捣乱,只统计前6位数字居然统计出7个来。
让AI把验证每一数字的步骤写出来,便可以得到正确答案。
让AI把步骤隐藏,替换成大量的“……”,依然能得到正确答案!
图片
这篇论文一经发布便掀起大量讨论,被评价为“我见过的最玄学的AI论文”。
图片
那么,年轻人喜欢说更多的“嗯……”、“like……”等无意义口癖,难道也可以加强推理能力?
图片
从“一步一步”想,到“一点一点”想
实际上,纽约大学团队的研究正是从思维链(Chain-of-Thought,CoT)出发的。
也就是那句著名提示词“让我们一步一步地想”(Let‘s think step by step)。
图片
过去人们发现,使用CoT推理可以显著提升大模型在各种基准测试中的表现。
目前尚不清楚的是,这种性能提升到底源于模仿人类把任务分解成更容易解决的步骤,还是额外的计算量带来的副产物。
为了验证这个问题,团队设计了两个特殊任务和对应的合成数据集:3SUM和2SUM-Transform。
3SUM要求从一组给定的数字序列中找出三个数,使得这三个数的和满足特定条件,比如除以10余0。
图片
这个任务的计算复杂度是O(n3),而标准的Transformer在上一层的输入和下一层的激活之间只能产生二次依赖关系。
也就是说,当n足够大序列足够长时,3SUM任务超出了Transformer的表达能力。
在训练数据集中,把与人类推理步骤相同长度的“...”填充到问题和答案之间,也就是AI在训练中没有见过人类是怎么拆解问题的。
图片
在实验中,不输出填充token“…...”的Llama 34M表现随着序列长度增加而下降,而输出填充token时一直到长度14还能保证100%准确率。
图片
2SUM-Transform仅需判断两个数字之和是否满足要求,这在 Transformer 的表达能力范围内。
但问题的最后增加了一步“对输入序列的每个数字进行随机置换”,以防止模型在输入token上直接计算。
结果表明,使用填充token可以将准确率从 78.7%提高到93.6%。
图片
除了最终准确率,作者还研究了填充token的隐藏层表示。实验表明,冻结前面层的参数,只微调最后一个Attention层,随着可用的填充token数量增多,预测的准确率递增。
这证实了填充token的隐藏层表示确实包含了与下游任务相关的隐性计算。
图片
AI学会隐藏想法了?
有网友怀疑,这篇论文难道在说“思维链”方法其实是假的吗?研究这么久的提示词工程,都白玩了。
图片
团队表示,从理论上讲填充token的作用仅限于TC0复杂度的问题范围内。
TC0也就是可以通过一个固定深度的电路解决的计算问题,其中电路的每一层都可以并行处理,可以通过少数几层逻辑门(如AND、OR和NOT门)快速解决,也是Transformer在单此前向传播中能处理的计算复杂度上限。
而足够长的思维链,能将Transformer的表达能力扩展到TC0之外。
而且让大模型学习利用填充token并不容易,需要提供特定的密集监督才能收敛。
也就是说,现有的大模型不太可能直接从填充token方法中获益。
但这并不是当前架构的内在局限性,如果在训练数据中提供足够的示范,它们应该也能从填充符号中获得类似的好处。
这项研究还引发了一个令人担心的问题:大模型有能力进行无法监控的暗中计算,对AI的可解释性和可控性提出了新的挑战。
换句话说,AI可以不依赖人类经验,以人们看不见的形式自行推理。
这既刺激又可怕。
图片
最后有网友开玩笑提议,让Llama 3首先生成1千万亿点点点,就能得到AGI的权重了(狗头)。
图片
论文:https://www.php.cn/link/36157dc9be261fec78aeee1a94158c26
参考链接:
[1]https://www.php.cn/link/e350113047e82ceecb455c33c21ef32a[2]https://www.php.cn/link/872de53a900f3250ae5649ea19e5c381
以上是AI学会隐藏思维暗中推理!不依赖人类经验解决复杂任务,更黑箱了的详细内容。更多信息请关注PHP中文网其他相关文章!

Apollo Research的一份新报告显示,先进的AI系统的不受检查的内部部署构成了重大风险。 在大型人工智能公司中缺乏监督,普遍存在,允许潜在的灾难性结果

传统测谎仪已经过时了。依靠腕带连接的指针,打印出受试者生命体征和身体反应的测谎仪,在识破谎言方面并不精确。这就是为什么测谎结果通常不被法庭采纳的原因,尽管它曾导致许多无辜者入狱。 相比之下,人工智能是一个强大的数据引擎,其工作原理是全方位观察。这意味着科学家可以通过多种途径将人工智能应用于寻求真相的应用中。 一种方法是像测谎仪一样分析被审问者的生命体征反应,但采用更详细、更精确的比较分析。 另一种方法是利用语言标记来分析人们实际所说的话,并运用逻辑和推理。 俗话说,一个谎言会滋生另一个谎言,最终

航空航天业是创新的先驱,它利用AI应对其最复杂的挑战。 现代航空的越来越复杂性需要AI的自动化和实时智能功能,以提高安全性,降低操作

机器人技术的飞速发展为我们带来了一个引人入胜的案例研究。 来自Noetix的N2机器人重达40多磅,身高3英尺,据说可以后空翻。Unitree公司推出的G1机器人重量约为N2的两倍,身高约4英尺。比赛中还有许多体型更小的类人机器人参赛,甚至还有一款由风扇驱动前进的机器人。 数据解读 这场半程马拉松吸引了超过12,000名观众,但只有21台类人机器人参赛。尽管政府指出参赛机器人赛前进行了“强化训练”,但并非所有机器人均完成了全程比赛。 冠军——由北京类人机器人创新中心研发的Tiangong Ult

人工智能以目前的形式并不是真正智能的。它擅长模仿和完善现有数据。 我们不是在创造人工智能,而是人工推断 - 处理信息的机器,而人类则

一份报告发现,在谷歌相册Android版7.26版本的代码中隐藏了一个更新的界面,每次查看照片时,都会在屏幕底部显示一行新检测到的面孔缩略图。 新的面部缩略图缺少姓名标签,所以我怀疑您需要单独点击它们才能查看有关每个检测到的人员的更多信息。就目前而言,此功能除了谷歌相册已在您的图像中找到这些人之外,不提供任何其他信息。 此功能尚未上线,因此我们不知道谷歌将如何准确地使用它。谷歌可以使用缩略图来加快查找所选人员的更多照片的速度,或者可能用于其他目的,例如选择要编辑的个人。我们拭目以待。 就目前而言

增强者通过教授模型根据人类反馈进行调整来震撼AI的开发。它将监督的学习基金会与基于奖励的更新融合在一起,使其更安全,更准确,真正地帮助

科学家已经广泛研究了人类和更简单的神经网络(如秀丽隐杆线虫中的神经网络),以了解其功能。 但是,出现了一个关键问题:我们如何使自己的神经网络与新颖的AI一起有效地工作


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器