微调在构建有价值的人工智能工具中起着至关重要的作用。这种使用更有针对性的数据集精炼预训练模型的过程可使用户大大增加模型对专业内涵的理解,允许用户为特定任务的模型增加现成知识。
虽然这个过程可能需要时间,但与从头开始训练模型相比,它的成本效益通常要高三倍。这一数值正如OpenAI最近宣布扩展其自定义模型程序以及为其微调API提供各种新功能所反映的那样。
自服务微调API的新特性
OpenAI于2023年8月首次宣布推出针对GPT-3的自助微调API,并受到了AI社区的热烈响应。据OpenAI报告称,成千上万的团体已经利用API来训练成千上万的模型,比如利用特定的编程语言生成代码,将文本总结为特定的格式,或根据用户行为创建个性化的内容。
自从2023年8月开始,工作匹配和招聘平台Indeed取得了重大成功。为了将求职者与相关的空缺职位相匹配,Indeed向用户发送个性化推荐。通过微调GPT 3.5 Turbo以生成更准确的流程解释,并能够将提醒中的令牌数量减少80%。这使得该公司每月发送给求职者的信息从不足100万条增加到大约2000万条。
新微调API特性建立在这个成功的基础上,希望为未来的用户改进功能:
基于epoch的检查点创建:在每个训练epoch自动生成一个完整的微调模型检查点,这减少了后续再训练的需要,特别是在过度拟合的情况下。
Comparity Playground:一个新的并行Playground UI,用于比较模型质量和性能,允许人工评估多个模型的输出或针对单个提示进行微调快照。
第三方集成:支持与第三方平台的集成(从权限重和偏差开始),使开发人员能够将详细的微调数据共享给堆栈的其余部分。
综合验证指标:能够计算整个验证数据集的损失和准确性等指标,从而更好地了解模型质量。
超级参数配置:能够从仪表板配置可用的超级参数(而不仅仅是通过API或SDK)。
微调仪表板改进:包括配置超级参数、查看更详细的训练指标以及从以前的配置中重新运行作业的能力。
基于过去的成功,OpenAI相信这些新功能将使开发人员对他们的微调工作有更细粒度的控制。
辅助微调和定制训练模型
OpenAI还在2023年11月在DevDay上发布的基础上,改进了自定义模型计划。其中一个主要变化是辅助微调的出现,这是一种利用API微调之外的有价值技术的手段,例如在更大范围内添加额外的超级参数和各种参数有效微调(PEFT)方法。
SK电信就是充分发挥这项服务潜力的一个例子。这家电信运营商在韩国拥有超过3000万用户,因此他们希望定制一种可以充当电信客户服务专家的人工智能模型。
通过与OpenAI合作对GPT-4进行微调,使其专注于韩国电信相关的对话,SK电信的对话摘要质量提高了35%,意图识别准确率提高了33%。当将他们的新微调模型与广义GPT-4进行比较时,他们的满意度得分也从3.6提高到4.5(满分5分)。
OpenAI还引入了为需要深度微调的特定领域知识模型的公司构建定制模型的能力。与法律人工智能公司Harvey的合作证明了这一功能的价值。法律工作需要大量阅读密集的文件,Harvey想用LLMs(大型语言模型)从这些文件中综合信息,并将其提交给律师进行审查。然而,许多法律是复杂的,并且依赖于上下文,Harvey希望与OpenAI合作建立一个定制训练的模型,该模型可以将新的知识和推理方法纳入基本模型。
Harvey与OpenAI合作,添加了相当于100亿令牌的数据来定制训练这个判例法模型。通过增加必要的背景深度来做出明智的法律判断,结果模型的事实性回答提高了83%。
人工智能工具从来都不是“包治百病”的解决方案。可定制性是这项技术有用性的核心,OpenAI在微调和定制训练模型方面的工作将有助于扩展已经从该工具中获得的组织。
以上是OpenAI提供新的微调和定制选项的详细内容。更多信息请关注PHP中文网其他相关文章!

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

Dreamweaver CS6
视觉化网页开发工具

Dreamweaver Mac版
视觉化网页开发工具

记事本++7.3.1
好用且免费的代码编辑器

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。