一个 7B 规模的语言模型 LLM 能存储多少人类知识?如何量化这一数值?训练时间、模型架构的不同将如何影响这一数值?浮点数压缩 quantization、混合专家模型 MoE、以及数据质量的差异 (百科知识 vs 网络垃圾) 又将对 LLM 的知识容量产生何种影响?
朱泽园(Meta AI)和李远志(MBZUAI)最新研究《语言模型物理学 Part 3.3:知识的Scaling Laws》用海量实验(50,000条任务,总计4,200,000 GPU小时)总结了12条定律,为LLM在不同文件下的知识容量提供了较为精确的计量方法。
作者首先指出,通过开源模型在基准数据集(benchmark)上的表现来衡量LLM的scaling law是不现实的。举例来说,LLaMA-70B在知识数据集上的表现比LLaMA-7B好30%,这并不能说明模型扩大10倍仅能在容量上提高30%。如果使用网络数据训练模型,我们也将很难估计其中包含的知识总量。
再举个例子,我们比较 Mistral 和 Llama 模型的好坏之时,到底是他们的模型架构不同导致的区别,还是他们训练数据的制备不同导致的?
在以上考量,作者采用了他们《语言模型物理学》系列论文的核心思路,即制造人工合成数据,通过控制数据中知识的数量和类型,来严格调控数据中的知识比特(bits)。同时,作者使用不同大小和构架的 LLM 在人工合成数据上进行训练,并给出数学定义,来精确计算训练好的模型从数据中学到了多少比特的知识。
- 论文地址:https://arxiv.org/pdf/2404.05405.pdf
- 论文标题:Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws
对于这项研究,有人表示这个方向似乎是合理的。我们可以使用非常科学的方式对scaling law 进行分析。
也有人认为,这项研究将 scaling law 提升到了不同的层次。当然,对于从业者来说是一篇必读论文。
研究概览
作者研究了三种类型的合成数据:bioS、bioR、bioD。bioS 是使用英语模板编写的人物传记,bioR 是由 LlaMA2 模型协助撰写的人物传记(22GB 总量),bioD 则是一种虚拟但可以进一步控制细节的知识数据(譬如可以控制知识的长度、词汇量等等细节)。作者重点研究了基于 GPT2、LlaMA、Mistral 的语言模型架构,其中 GPT2 采用了更新的 Rotary Position Embedding (RoPE) 技术。
左图为训练时间充足,右图为训练时间不足的 scaling laws
上图 1 简要概述了作者提出的前 5 条定律,其中左 / 右分别对应了「训练时间充足」和 「训练时间不足」两种情况,分别对应了常见知识(如中国首都是北京)和较少出现的知识(如清华物理系成立于 1926 年)。
如果训练时间充足,作者发现,不论使用何种模型架构,GPT2 或 LlaMA/Mistral,模型的存储效率均可以达到 2bit/param—— 即平均每个模型参数可以存储 2 比特的信息。这与模型的深度无关,仅与模型大小有关。换言之,一个 7B 大小的模型,如果训练充足,可以存储 14B 比特的知识,这超过了维基百科和所有英文教科书中人类知识的总和!
更令人惊讶的是,尽管传统理论认为 transformer 模型中的知识主要存储在 MLP 层,但作者的研究反驳了这一观点,他们发现即便移除了所有 MLP 层,模型仍能达到 2bit/param 的存储效率。
图 2:训练时间不足情况下的 scaling laws
然而,当我们观察训练时间不足的情况时,模型间的差异就显现出来了。如上图 2 所示,在这种情况下,GPT2 模型能比 LlaMA/Mistral 存储超过 30% 的知识,这意味着几年前的模型在某些方面超越了今天的模型。为什么会这样?作者通过在 LlaMA 模型上进行架构调整,将模型与 GPT2 的每个差异进行增减,最终发现是 GatedMLP 导致了这 30% 的损失。
强调一下,GatedMLP 并不会导致模型的「最终」存储率变化 —— 因为图 1 告诉我们如果训练充足它们就不会有差。但是,GatedMLP 会导致训练不稳定,因此对同样的知识,需要更长的训练时间;换句话说,对于较少出现在训练集里的知识,模型的存储效率就会下降。
图 3:quantization 和 MoE 对模型 scaling laws 的影响
作者的定律 8 和定律 9 分别研究了 quantization 和 MoE 对模型 scaling law 的影响,结论如上图 3 所示。其中一个结果是,将训练好的模型从 float32/16 压缩到 int8,竟然对知识的存储毫无影响,即便对已经达到 2bit/param 存储极限的模型也是如此。
这意味着,LLM 可以达到「信息论极限」的 1/4—— 因为 int8 参数只有 8 比特,但平均每个参数可以存储 2 比特的知识。作者指出,这是一个普遍法则(universal law),和知识的表现形式无关。
最引人注目的结果来自于作者的定律 10-12(见图 4)。如果我们的 (预) 训练数据中,有 1/8 来自高质量知识库(如百度百科),7/8 来自低质量数据(如 common crawl 或论坛对话,甚至是完全随机的垃圾数据)。
那么,低质量数据是否会影响 LLM 对高质量知识的吸收呢?结果令人惊讶,即使对高质量数据的训练时间保持一致,低质量数据的「存在本身」,可能会让模型对高质量知识的存储量下降 20 倍!即便将高质量数据的训练时间延长 3 倍,知识储量仍会降低 3 倍。这就像是将金子丢进沙子里,高质量数据被严重浪费了。
有什么办法修复呢?作者提出了一个简单但极其有效的策略,只需给所有的 (预) 训练数据加上自己的网站域名 token 即可。例如,将 Wiki 百科数据统统加上 wikipedia.org。模型不需要任何先验知识来识别哪些网站上的知识是「金子」,而可以在预训练过程中,自动发现高质量知识的网站,并自动为这些高质量数据腾出存储空间。
作者提出了一个简单的实验来验证:如果高质量数据都加上一个特殊 token(任何特殊 token 都行,模型不需要提前知道是哪个 token),那么模型的知识存储量可以立即回升 10 倍,是不是很神奇?所以说对预训练数据增加域名 token,是一个极其重要的数据制备操作。
图 4:预训练数据「知识质量不齐」情形下的 scaling laws,模型缺陷以及如何修复
结语
作者认为,通过合成数据,计算模型在训练过程中获得的知识总量的方法,可以为「评估模型架构、训练方法和数据制备」提供了一套系统且精确的打分体系。这和传统的 benchmark 比较完全不同,并且更可靠。他们希望这能帮助未来 LLM 的设计者做出更明智的决策。
以上是Llama架构比不上GPT2?神奇token提升10倍记忆?的详细内容。更多信息请关注PHP中文网其他相关文章!

重新构想影响:四倍的底线 长期以来,对话一直以狭义的AI影响来控制,主要集中在利润的最低点上。但是,更全面的方法认识到BU的相互联系

事情正稳步发展。投资投入量子服务提供商和初创企业表明,行业了解其意义。而且,越来越多的现实用例正在出现以证明其价值超出

您急于满足截止日期,并决定使用Chatgpt创建营销电子邮件。您输入AI提示:“写一条专业的100字营销电子邮件”。结果是缺乏音调或Struc的通用,术语的文件

介绍 想象一下,需要从成千上万的交易和许多促成因素中确定您公司的最高销售代表。 传统方法变得麻烦。 SQL的排名功能为召集提供了有效的解决方案

众议院和参议院都同意在周末进行预算框架。该框架要求削减支出,以支付削减税收的费用,这些减税量不成比例,以防止赤字增加,同时也增加

雪花首席执行官在坐下来告诉我:“人工智能不应该是大爆炸。” “这应该是一系列小项目,显示出每一步的价值。”但是,正如拉马斯瓦米(Ramaswamy)指出的那样,虽然这听起来可能谨慎,但实际上是策略。 在中间

Deezer的首席创新官Aurelien Herault在一份声明中说:“ AI产生的内容继续传到Deezer等洪水流媒体平台,我们没有看到它放慢速度的迹象。” 虽然没有减轻洪水的迹象,但Deezer确实有

这种转变不再是理论上的。 卡夫集团(Kraft Group) - 新英格兰爱国者队,新英格兰革命和吉列特体育场(Gillette Stadium)的所有者 - 刚刚宣布与NWN建立战略合作伙伴关系,以现代化和转变KR的技术


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

WebStorm Mac版
好用的JavaScript开发工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中