搜索
首页科技周边人工智能低成本算法,大幅提升视觉分类鲁棒性!悉尼大学华人团队发布全新EdgeNet方法

在深度神经网络(DNNs)中,展现出了卓越的准确性。然而,它们对额外噪声,即对抗性攻击,表现出了脆弱性。先前的研究设这种脆弱性可能源于高准确度的DNNs过度依赖于纹理和背景等无关紧要且不受限制的特征。然而,新的研究揭示了这种脆弱性与高准确度的DNNs过度信任其权重及背景等无关因素的特定特征无关。

在最近的AAAI 2024学术会议上,悉尼大学的研究人员揭示了“从图像中提取的边缘信息能够提供与形状和背景相关的相关性强且鲁棒的特征”。

低成本算法,大幅提升视觉分类鲁棒性!悉尼大学华人团队发布全新EdgeNet方法

论文链接:https://ojs.aaai.org/index.php/AAAI/article/view/28110

这些特征在帮助预训练深度网络改善对抗鲁棒性的同时,还不影响其在清晰图像上的准确性。

研究人员提出了一种轻量级且适用的EdgeNet,可无缝集成到现有的预训练深度网络中,包括Vision Transformers(ViTs),这是最新一代用于视觉分类的先进模型家族。

EdgeNet是一种处理从干净的自然图像或嘈杂的对抗性图像中提取的边缘的边缘缘提取技术,可以注入到预训练好并被冻结的骨干深度网络的中间层。这种深度网络具有优秀的骨干鲁棒性特征,可以提取具有丰富语义信息的特征。通过将EdgeNet插入到这样的网络中,可以利用其高质量的骨干深度网络

需要注意的是,这种方法带来的额外成本极低:使用传统的边缘检测算法(例如文中所提到的Canny边缘检测器)获取这些边缘的成本与深度网络的推理成本相比微乎其微;而训练EdgeNet的成本则与使用诸如Adapter等技术对骨干网络进行微调的成本不相上下。

EdgeNet 架构

为了将图像中的边缘信息注入到预训练的骨干网络中,作者引入了一个名为EdgeNet的侧支网络。这个轻量级、即插即用的侧枝网络可以无缝地集成到现有的预训练深度网络中,包括像ViTs这样的最新模型。

经过输入图像中提取的边缘信息运行,EdgeNet 可以生成一组具有鲁棒性的特征。这个过程产生了一个具有鲁棒性的特征,有鲁棒性的特征可以被选择性地注入到预训练好的骨干深度网络中,以便在深度网络的中间层中进行冻结。

通过注入这些鲁棒特征,能够提升网络在防御对抗性扰动方面的能力。同时,由于骨干网络是被冻结的,而新特征的注入是有选择性的,所以可以保持预训练网络在识别未经扰动的清晰图像方面的准确性。

低成本算法,大幅提升视觉分类鲁棒性!悉尼大学华人团队发布全新EdgeNet方法

如图所示,作者在原有的构建块低成本算法,大幅提升视觉分类鲁棒性!悉尼大学华人团队发布全新EdgeNet方法基础上,以一定间隔 N 插入新的 EdgeNet 构建块低成本算法,大幅提升视觉分类鲁棒性!悉尼大学华人团队发布全新EdgeNet方法。新的中间层输出可以由以下公式表示:

低成本算法,大幅提升视觉分类鲁棒性!悉尼大学华人团队发布全新EdgeNet方法

EdgeNet 构建块

为了实现选择性特征提取和选择性特征注入,这些 EdgeNet 构建块采取了一种“三明治”结构:每个块的前后都添加了零卷积(zero convolution)来控制输入与输出。在这两个零卷积之间是一个具有随机初始化的、与骨干网络架构相同的 ViT block

低成本算法,大幅提升视觉分类鲁棒性!悉尼大学华人团队发布全新EdgeNet方法

利用零输入,低成本算法,大幅提升视觉分类鲁棒性!悉尼大学华人团队发布全新EdgeNet方法充当提取与优化目标相关信息的过滤器;利用零输出, 充当确定要集成到骨干中的信息的过滤器。此外,通过零初始化,可以确保了骨干内的信息流保持不受影响。因此,对 EdgeNet 的后续微调变得更加简化。

训练目标

在训练 EdgeNet 的过程中,预训练好的 ViT 骨干网络除了分类头均被冻结住,不进行更新。优化目标仅专注于为边缘特征引入的 EdgeNet 网络,以及骨干网络内的分类头。在这里,作者采用了一个非常简化的联合优化目标以保障训练的效率:

低成本算法,大幅提升视觉分类鲁棒性!悉尼大学华人团队发布全新EdgeNet方法

在公式9 中,α 是准确性损失函数的权重,β 是鲁棒性损失函数的权重。通过调整 α 和 β 的大小,可以微调 EdgeNet 训练目标的平衡性,以达到在提升其鲁棒性的同时不显着损失准确性的目的。

实验结果

作者们在 ImageNet 数据集上针对两大类鲁棒性进行了测试。

第一类是抵御对抗攻击的鲁棒性,包括白盒攻击与黑盒攻击;

第二类是抵御一些常见的扰动的鲁棒性,包括ImageNet-A 中的自然对抗样本(Natural Adversarial Examples),ImageNet-R 中的分布外数据(Out-of-Distribution Data)和ImageNet-C 中的常见数据扭曲( Common Corruptions)。

作者还针对不同扰动下提取到的边缘信息进行了可视化。

低成本算法,大幅提升视觉分类鲁棒性!悉尼大学华人团队发布全新EdgeNet方法

网络规模与性能测试

在实验部分,作者首先测试了不同规模EdgeNet 的分类性能和计算开销(Table 1)。在综合考虑分类性能和计算计算开销后,他们确定 #Intervals = 3的配置为最佳设置。

在这个配置中,EdgeNet 与基准模型相比获得了显着的准确度和鲁棒性提升。它在分类性能、计算要求和鲁棒性之间取得了平衡的妥协。

低成本算法,大幅提升视觉分类鲁棒性!悉尼大学华人团队发布全新EdgeNet方法

该配置在保持合理的计算效率的同时,在清晰准确度和鲁棒性方面取得了实质性的增益。

准确性与鲁棒性对比

作者将他们提出的EdgeNet 与5个不同类别的SOTA 方法进行了对比(Table 2)。这些方法包括在自然图像上训练的 CNNs、鲁棒的 CNNs、在自然图像上训练的 ViTs、鲁棒的ViTs 和经过鲁棒微调的ViTs。

考虑的指标包括在对抗攻击(FGSM 和 PGD)下的准确性、在ImageNet-A上的准确性以及在ImageNet-R上的准确性。

此外,还报告了ImageNet-C 的平均错误(mCE),较低的值表示更好的性能。实验结果表明 EdgeNet 在面对 FGSM 和 PGD 攻击时展现出卓越的性能,同时在清晰的 ImageNet-1K 数据集及其变体上表现出与先前 SOTA 方法相持平的水平。

低成本算法,大幅提升视觉分类鲁棒性!悉尼大学华人团队发布全新EdgeNet方法

除此之外,作者还开展了黑盒攻击的实验(Table 3)。实验结果表明,EdgeNet 也能十分有效的抵挡黑盒攻击。

低成本算法,大幅提升视觉分类鲁棒性!悉尼大学华人团队发布全新EdgeNet方法

结论

在这项工作中,作者提出了一种名为 EdgeNet 的新方法,它通过利用从图像中提取到的边缘信息,可以提升深度神经网络(特别是 ViTs)的鲁棒性。

这是一个轻量级且可以无缝集成到现有网络中的模块,它能够有效的提高对抗性鲁棒性。实验证明,EdgeNet 具有高效性——它仅带来了极小的额外计算开销。

此外 EdgeNet 在各种鲁棒基准上具有广泛适用性。这使其成为该领域引人注目的进展。

此外,实验结果证实,EdgeNet 可以有效抵抗对抗性攻击,并能在干净图像上保持的准确性,这突显了边缘信息在视觉分类任务中作为鲁棒且相关特征的潜力。

值得注意的是,EdgeNet 的鲁棒性不仅限于对抗性攻击,还涵盖了涉及自然对抗性示例(ImageNet-A)、分布之外的数据(ImageNet-R)和常见破坏(ImageNet-C)情景。

这种更广泛的应用凸显了EdgeNet的多功能性,并显示其作为视觉分类任务中多样挑战的全面解决方案的潜力。

以上是低成本算法,大幅提升视觉分类鲁棒性!悉尼大学华人团队发布全新EdgeNet方法的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
及时工程中的思想图是什么及时工程中的思想图是什么Apr 13, 2025 am 11:53 AM

介绍 在迅速的工程中,“思想图”是指使用图理论来构建和指导AI的推理过程的新方法。与通常涉及线性S的传统方法不同

优化您的组织与Genai代理商的电子邮件营销优化您的组织与Genai代理商的电子邮件营销Apr 13, 2025 am 11:44 AM

介绍 恭喜!您经营一家成功的业务。通过您的网页,社交媒体活动,网络研讨会,会议,免费资源和其他来源,您每天收集5000个电子邮件ID。下一个明显的步骤是

Apache Pinot实时应用程序性能监视Apache Pinot实时应用程序性能监视Apr 13, 2025 am 11:40 AM

介绍 在当今快节奏的软件开发环境中,确保最佳应用程序性能至关重要。监视实时指标,例如响应时间,错误率和资源利用率可以帮助MAIN

Chatgpt击中了10亿用户? Openai首席执行官说:'短短几周内翻了一番Chatgpt击中了10亿用户? Openai首席执行官说:'短短几周内翻了一番Apr 13, 2025 am 11:23 AM

“您有几个用户?”他扮演。 阿尔特曼回答说:“我认为我们上次说的是每周5亿个活跃者,而且它正在迅速增长。” “你告诉我,就像在短短几周内翻了一番,”安德森继续说道。 “我说那个私人

pixtral -12b:Mistral AI'第一个多模型模型 - 分析Vidhyapixtral -12b:Mistral AI'第一个多模型模型 - 分析VidhyaApr 13, 2025 am 11:20 AM

介绍 Mistral发布了其第一个多模式模型,即Pixtral-12b-2409。该模型建立在Mistral的120亿参数Nemo 12B之上。是什么设置了该模型?现在可以拍摄图像和Tex

生成AI应用的代理框架 - 分析Vidhya生成AI应用的代理框架 - 分析VidhyaApr 13, 2025 am 11:13 AM

想象一下,拥有一个由AI驱动的助手,不仅可以响应您的查询,还可以自主收集信息,执行任务甚至处理多种类型的数据(TEXT,图像和代码)。听起来有未来派?在这个a

生成AI在金融部门的应用生成AI在金融部门的应用Apr 13, 2025 am 11:12 AM

介绍 金融业是任何国家发展的基石,因为它通过促进有效的交易和信贷可用性来推动经济增长。交易的便利和信贷

在线学习和被动攻击算法指南在线学习和被动攻击算法指南Apr 13, 2025 am 11:09 AM

介绍 数据是从社交媒体,金融交易和电子商务平台等来源的前所未有的速度生成的。处理这种连续的信息流是一个挑战,但它提供了

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器